• Title/Summary/Keyword: 조종운동특성

Search Result 65, Processing Time 0.028 seconds

Mathematical Model for Dynamics of Manta-type Unmanned Undersea Vehicle with Six Degrees of Freedom and Characteristics of Manoeuvrability Response (Manta형 무인잠수정의 6자유도 운동 수학모델 및 조종응답 특성)

  • Sohn, Kyoung-Ho;Lee, Seung-Keon;Ha, Seung-Pil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.399-413
    • /
    • 2006
  • Mathematical model for coupled motions of Manta-type Unmanned Undersea Vehicle(UUV) moving with six degrees of freedom, is formulated. Furthermore, a calculation method for estimating the linear hydrodynamic derivatives acting on UUV, is proposed, and some of the estimated linear hydrodynamic derivatives are compared with results of captive model experiment. Based on linear dynamic model of UUV, a study was made to examine dynamic stability and turning ability in horizontal plane. And directional stability and required elevation rudder angles for neutrally operating in vertical plane, are also discussed.

A Study on the Prediction of the Maneuverability of Ships at Initial Design Stage, Considering Stern Form (초기설계시 선박의 선미 형상을 고려한 조종성능 추정에 관한 연구)

  • Seung-Keon Lee;Jae-Young Choi;Yeong-Seok Seo;Woo-Jin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.72-76
    • /
    • 1999
  • To predict the maneuverabiliy of a ship, it is most reliable to carry out the model tests for the ship. But, at the initial design stage of ships, scene other methods of predicting the overall maneuverabiliy of ships with confined data, like principal dimensions and propeller and rudder characteristics, are required. In this paper, the authors suggested new formulas for the linear derivatives of the sway force and yaw moment, based on the captive model test carried out by the Japanese researchers. These formulas can account the effects of stern frame line shape and stern profile, when assessing the maneuverability of ships. The usefulness of the formulas are discussed by comparing the simulations with the model tests.

  • PDF

Maneuvering Performances of a Ship with Flap Rudder (Flap 타를 채택한 선박의 조종성능 특성)

  • Lee Ho-Young;Shin Sang-Sung;Park Hong-Shik;Park Jong-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.70-74
    • /
    • 2001
  • In this paper, we studied the maneuvering performances of a ship with flapped rudder. PMM tests were carried out for a ship model with horn type rudder or flapped rudder. The Abkowitz's model was used as a basic mathematical model to simulate the maneuvering motions. The maneuvering motions of a ship with flapped rudder were compared with those of a ship with horn-type rudder. As a result, it was found that the turning ability of a ship with flapped rudder was remarkably improved.

  • PDF

The Effects of Rudder Size on Characteristics of Fluid Flow around Ship's Stern in Manoeuvring Motion (타의 크기가 조종운동시 선미 유동 특성에 미치는 영향)

  • 손경호;김용민
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • It is well known that, especially in the case of full-bodied ship, the course stability may become the severest among 4 items of requirement in Interim Standards for Ship Manoeuvrability adopted by IMO in 1993. The purpose of this study is to find some ideas for characteristics of fluid flow pattern around ship's stern in manoeuvring motion with parameter of changes in rudder size. We carried out two kinds of model experiment in obliquely running condition at circulating water channel. One is measurement on straightening effect of incoming flow to rudder and the other is experiment on flow visualization around the gap between rudder and stern-bottom. We discuss the correlation between the flow characteristics around ship's stem and flow straightening effect at rudder from the viewpoint of course stability. As a result, it is clarified that the gap between rudder and stern-bottom plays an important role in course stability of full-bodied ship. It is pointed out that there is quite a possibility of bad course stability as the gap between rudder and stern-bottom decreases.

  • PDF

A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane (경비행기의 비행특성 분석 및 준경험적 분석 방법 비교)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, for development of the MDO (Multi Disciplinary Optimization) framework, the flight dynamic characteristic parameters of the ChangGong-91, a light aircraft, were extracted by an analytical method based on various semi-empirical methods, and the flight test method was compared and evaluated. The semi-empirical analysis methods for comparative subjects were the Perkins method, McCormick method, and Smetana method. The major stability/control derivatives and dynamic factors were calculated, using each method. As the comparison criteria, the flight test derivative estimates and dynamic factors were processed, using the output error method. Additionally, the flight characteristics of the light aircraft were analyzed and evaluated according to the provisions of the Korean Airworthiness Standard (KAS) of the Ministry of Land, Infrastructure and Transport, and MIL-F-8785C for the U.S. military.

A Study on efficiency of Semi-permeability Floating Breakwater (반투과성 부유 소파구조물의 소파 효율에 관한 연구)

  • Park, Ro-Sik;Kwak, Suk-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.197-201
    • /
    • 2002
  • 양식장 해양 레져, 항구 등에서 Calm Sea Area을 필요로 한다. 착저식은 소파효율은 좋으나 해수순환을 방해하여 환경에 좋지 않은 영향을 미치게 된다. 또한 설치비용이나 설치 해역의 한계가 있다. 따라서 이러한 한계들을 극복하기 위해서 부유식 소파구조물을 채택하였다. 본 논문에서는 몇 가지 소파공의 크기를 가지는 반 투과성 부유 소파구조물을 무한수심에서 유체역학적 특성과 소파효율을 계산하였다. 산란문제와 발산문제를 해결하기 위해 선형 포텐셜이론을 사용하여 구조물의 유체역학적 특성을 계산하였다. 적절한 소파공의 크기를 결정함에 따라 소파효율을 향상시킬 수 있다.

  • PDF

A Study on Estimation of the Course Keeping Ability of a Ship in Confined Waterways Using the MMG Model (MMG 모델을 이용한 제한수로를 운항하는 선박의 침로안정성능 추정에 관한 연구)

  • Kim, Hyunchul;Kim, In-Tae;Kim, Sanghyun;Kwon, Soo Yeon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.369-376
    • /
    • 2019
  • Ship hydrodynamics in the confined waterways is challenging. When a ship is maneuvering in confined waterways, the hydrodynamic behavior may vary significantly because of the hydrodynamic interaction between the bottom of the ship hull and the seabed, or so-called shallow water effects. Thus, an accurate prediction of shallow water and bank effects is essential to minimizing the risk of the collision and the grounding of the ships. The hydrodynamic derivatives measured by the virtual captive model test provide a path to predicting the change in ship maneuverability. This paper presents a numerical simulation of captive model tests to predict the maneuverability of a ship in confined waterways. Also, straight and zig-zag simulation were conducted to predict the trajectory of a ship maneuvering in confined waterways. The results showed that the asymmetric flow around a ship induced by vicinity of banks causes pressure differences between the port and starboard sides and the trajectory of a ship maneuvering in confined waterways.

Dynamics modeling and Estimation of Manoeuvrability for Tug-Barge Systems (예부선의 동역학 모델링 및 조종 성능 추정법 개발)

  • Yeo, Dong-Jin;Han, Seong-Hwan;Kim, Dong-Jin;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.40-41
    • /
    • 2009
  • In general, ships are towed to keep the safe operations in harbor or channel by tug boats. Due to increase in ocean traffic, many accidents are happened in harbor or channel in these days. Therefore it is necessary to predict manoeuvrability of tug-barge system, and to assure the safety of that system. Turg-barge system is composed of tug boat, barge, and towing cable, connecting both ships. Manoeuvring equations of tug-barge system are suggested, and the scopes of model tests are discussed to establish the mathematical models for tug boats in this paper.

  • PDF

Preliminary Evaluation of Handling Qualities of a SAR(Search & Rescue) Helicopter Simulator Based on ADS-33 Requirements (ADS-33 평가기준에 따른 소방헬기 비행시뮬레이터의 비행조종성 예비평가)

  • Yoon, Sugjoon;Kim, Donghyun;Seong, Eunhye;Park, Taejun;Hwang, Hoyon;Ahn, Jon;Lee, Junghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.796-805
    • /
    • 2016
  • As a part of the first stage in the helicopter flight simulator development, this study numerically evaluates handling qualities of the dynamics model. The flight dynamics model was generated using public information for AS365 N2, the target aircraft of the simulator. The flight simulator is under development as a pilot training and research tool for firefighting missions. The assessment of the model intends to validate general characteristics and suitability before the model is enhanced with flight test data. The evaluation is based on the ADS-33E-PRF(Aeroautical Design Standard Performance Specification Handling Qualities Requirement) criteria, with consideration of category of the aircraft, missions, and environment. The numerical operations follow required or recommended procedures of flight test for compliance demonstration. Evaluation results are evaluated according to the rating specified in maneuverability ADS-33E-PRF. Results have identified to provide a satisfactory platform for flight dynamic model in the general helicopter simulator generated based on the RotorLibFDM, and can be used as a base for basic training and research.

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance (탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구)

  • Kim, Kyung Sung;Yu, Sunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.796-802
    • /
    • 2018
  • The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.