• Title/Summary/Keyword: 조적조 벽체

Search Result 28, Processing Time 0.027 seconds

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

The sound insulation performance of eco-friendly loess brick wall (친환경 황토벽체의 차음성능 평가에 관한 연구)

  • Lee, Tai-Gang;Kim, Yul;Song, Kook-Gon;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.13-18
    • /
    • 2009
  • Korean traditional houses have been developed in harmony with natural environment and comfortable indoor condition by using the natural resources including building layout, space composition and materials. Originally Korea traditional architectures have used wood lintel constructions and loess walls through the many years. Theses loess have many strength such as highly heat capacity, controling of humidity, a deodorant than any other materials. Nowaday it is recommended to use exterior and interior walls in loess wall to meet the eco-friendly materials to improve our residental environmental. Thus this study aims to research the sound insulation performance of traditional loess brick wall varied with thickness, thermal insulation materials and cavity wall. The sound insulation performance of these loess walls are compared with other masonry wall's and sound insulation performance of th walls were tested in anechoic laboratory to measure the sound transmission loss of these walls. The loess brick wall with 75mm thickness of cavity is shown the sound insulation performance with Rw 57 which is nearly same performances of 1B brick wall and cement 8' block wall, The improving effect of insulation materials is shown in the high frequency bandwidth. Especially, there is improving as much as 11 dB using the extruded poly stylene form(75mm) and poly ethylene film(0.7mm).

Seismic Performance Evaluation of Masonry Walls Retrofitted with Semi-buried Lattice Reinforcement (조적식 구조물의 부분 매입식 격자철근 보강기법의 내진 성능 평가)

  • Kim, Sang Hyo;Choi, Moon Seock;Park, Se Jun;Ahn, Jin Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 2011
  • Masonry structure is a style of building which has been widely applied as residential facilities of low and middle stories, commercial and public facilities etc. But it is possible to destroy by loss of adhesive strength or sliding when lateral forces, such as earthquake, occurs. This study proposes a seismic retrofit method for masonry structure and its seismic performance is demonstrated by shaking table test. Two specimens per each shaking direction were made, having out-of-plane(weak axis) and in-plane(strong axis) direction. External load of 1 ton was also applied for each specimen during the test, to model the behavior of reinforced masonry wall. As a result of shaking table tests, it is shown that the specimen applying the proposed seismic retrofit method showed acceptable behaviors in both of Korea building design criteria(0.14g) and USA seismic criteria suggested by IBC(0.4g). However, it was observed that stiffness of the specimen toward out-of-plane was rapidly decreasing when seismic excitations over 0.14g were loaded. In comparison of relative displacements, maximum relative displacement of specimens which were accelerated toward out-of-plane with 0.4g at once was 29~31% of maximum relative displacement when specimens were gradually accelerated from 0.08g to 0.4g, while the maximum relative displacement of specimens accelerated toward in-plane has similar value in both cases. Therefore, it is concluded that the wall accelerated toward out-of-plane is more affected by hair crack or possible fatigues caused by seismic excitation.

Experimental Study for Higher Seismic Performance of Confined Masonry Wall System (주변이 RC로 구속된 조적조 벽체의 내진성능향상에 관한 실험적 연구)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung-Joe;Yoshimura Koji;Sung Ki-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.5-8
    • /
    • 2004
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of four one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The constant vertical axial stresses applied are 0, 0.84 and 1.80MPa, while the amount of reinforcements in horizontal and vertical directions are $0\%,\;0.08\%\;and\;0.18\%$ respectively. Test results obtained for each specimen include cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

The changing characteristics of Material and Structure of Rural Housing in the aspect of Period and Region (지역별·시기별 농촌주택의 재료 및 구법 특징 변화 연구)

  • Bae, Woong-Kyoo;Joo, Dae-Khan;Jeong, Dong-Seop;Yun, Yong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6504-6513
    • /
    • 2013
  • The result can be summarized as follows. First, the following periodically changing characteristics were examined:roof form(gambrel/hipped-flat-gable), structure of roof and wall(wood-framed-cement masonry-RC-Light iron framed), roof material(thatched-tiled-slate-cement/steel sheet-asphalt/sandwich panel/mortar water-proofing), wall material(clay plaster/lime plastered-dressing tile/bricks-painting on the cement plastering-native stone dressing/siding/tile), fence material(masonry of stone and cement bricks), and courtyard materials(clay and concrete). Secondly, the regionally changing characteristics of those elements, rural housing structure, roof form, roof structure material, wall finishing material, fence and courtyard material in the outer space, differed according to the location of rural housing, i.e.north, middle, south region. The changing characteristics of both the roof structure and wall structure are similar to those of the three regions.

Seismic Performance Evaluation of Confined Masonry Wall System Considering of Shear-Depth Ratio (전단스팬비 영향을 고려한 RC구속조적조 벽체의 내진성능평가)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung Joe;Sung Ki Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.1-4
    • /
    • 2005
  • To investigate the effective seismic strengthening methods for masonry walls in developing countries, a total of four confined masonry (CM) walls were constructed and tested. In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns for the improvement of the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. The heights of inflection point considered were 0.67 and 1.11 times the height of the wall measured from the top of foundation beam. The constant vertical axial stress applied was 0 MPa. During the test, cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations was measured. From test data, it was showed that the seismic performance of confined concrete block masonry walls was significantly affected by test variables.

  • PDF

Seismic Performance Evaluation of Unreinforced Masonry Buildings Retrofitted by Strengthening External Walls (외부벽체 강도증진형 보강이 적용된 비보강 조적조 건물의 내진성능평가)

  • Seol, Yun Jeong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.