• Title/Summary/Keyword: 조립식 기초부

Search Result 13, Processing Time 0.027 seconds

An Experimental Study on Seismic Performance of Precast Segmental PSC Bridge Piers with Precast Footings (프리캐스트 기초부를 갖는 조립식 PSC 교각의 내진성능에 관한 실험적 연구)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.451-452
    • /
    • 2009
  • The purpose of this study was to investigate the seismic performance of precast segmental PSC bridge piers with precast footings. A model of precast segmental PSC bridge piers with precast footings was tested under a constant axial load and a cyclically reversed horizontal load.

  • PDF

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : I. Development and Verification of System (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.395-405
    • /
    • 2009
  • The purpose of this study was to investigate the performance of precast segmental PSC bridge columns with precast concrete footings. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete footings is intended to support precast segmental PSC bridge columns and provides an alternative to current cast-inplace systems, particularly for areas where reduced construction time is desired. Shortened construction time, in turn, leads to important safety and economic advantages when traffic disruption or rerouting is necessary. A model of precast segmental PSC bridge columns was tested under a constant axial load and a cyclically reversed horizontal load. In the companion paper, the experimental and analytical study for the performance assessment of precast segmental PSC bridge columns with precast concrete footings is performed.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : II. Experiments and Analyses (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.407-419
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns with precast concrete footings and to provide the details and reference data. Six precast segmental PSC bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast segmental PSC bridge columns with precast concrete footings and presents conclusions based on the experimental and analytical findings.

Seismic Performance of Fabricated Internally Confined Hollow CFT Column (조립식 내부 구속 중공 CFT 기둥의 내진 성능)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.397-407
    • /
    • 2013
  • Recently, a great progress has been made in bridge construction technology through the development of high performance materials and new structural types. However, most of attention has been paid to the cast-in-place technologies and material cost saving. The cast-in-place method is always subject to some environmental damages in construction sites, which frequently causes conflicts with residents. To overcome the disadvantages, a lot of fabrication construction method was developed. Most fabrication construction methods developed up to now have been applied for superstructure of bridges. In contrast, such fabricable methods developed for substructures are extremely rare. A fabricated column using ICH CFT(Internally Confined Hollow CFT) column was developed in a series of previous researches. Included in the previous studies are design and construction methods for the precast segmental coping, the column-coping connection, the column-segment connection, column-foundation connection. In this paper, seismic performance of the fabricated ICH CFT columns was extensively investigated experimentally. Two test specimens were prepared depending on the connection methods of segments; one by mortar-grouting method and the other by reinforcement method using stiffeners.

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.475-484
    • /
    • 2010
  • The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings.

Nonlinear Finite Element Analysis of Prefabricated PSC Columns with Precast Footing (프리캐스트 기초부를 갖는 조립식 PSC 교각의 비선형 유한요소 해석)

  • Park, Young-Gi;Kim, Tae-Hoon;Cheon, Ju-Hyoun;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.177-178
    • /
    • 2009
  • This study is based on the precast concrete bridge which recently became important field of bridge construction. to develop the connecting technology of pier and footing, the purpose of this study is to verify applicability through the result of nonlinear analysis.

  • PDF

Nonlinear Finite Element Analysis of Precast Pier Coping (프리캐스트 교각 코핑부의 비선형 유한요소해석)

  • Cheon, Ju-Hyoun;Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.153-154
    • /
    • 2010
  • For completing an fully optimized and prefabricated substructure system of bridge, developing pier of precast segment PSC which equip the connection structure of shear resistance and precast foundation are conducted previously. Specimens of coping of bridge were developed and customized, and experiments were performed. The result of the experiment through the result from a reliable non-linear analysis program (RCAHEST) were compared and analyzed and evaluated the stability and ultimate behavior of coping of precast pier.

  • PDF

Performance of Precast Composite Piers for Fast Construction (급속시공형 프리캐스트 합성교각의 성능)

  • Shim, Chang-Su;Chung, Young-Soo;Yoon, Jae-Young;Park, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.221-224
    • /
    • 2008
  • Recently various types of prefabricated pier has been developed. In this paper, prefabricated composite columns with core steel elements embedded in concrete were proposed, which has no prestressing. Based on the previous research on composite columns with low steel ratio, the column were designed. A simple bolt connection detail between a footing and a pier element were also suggested. In order to investigate the seismic performance of the composite columns, several tests on concrete encased composite columns, which are prefabricated, were performed. Quasi-static tests were carried out and their performance was evaluated and compared with the results from the tests on CIP composite piers. In the case of precast piers, the end part of the pier needs to be carefully reinforced and related recommendations on details were derived.

  • PDF

Mechanical behaviour of waterway culvert structure assembled by precast segments (프리캐스트 세그먼트를 이용한 조립식 수로암거구조물의 역학적 거동 특성)

  • Lee, Gyu-Phil;Hwang, Jae-Hong;Shin, Hyu-Sung;Hong, Se-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • Due to the characteristic of culvert structure, the standard section of the culvert has been established and applied in field. However, this becomes a limitation in selecting a section design corresponding to various field conditions although it can improve the design and applicability of culvert structure. In order to overcome this limitation, we have developed the design and application technology of culvert structure corresponding to the field conditions that various shapes of culvert structure can be covered by assembly of precast segments. Because the structural characteristics of assembling-type waterway culvert structure, the thickness of structure and amount of reinforcing rods can vary according to the fixation or internal hinge status in the connection part of precast segments. This has a strong influence on the applicability and economic efficiency of culvert structure. Accordingly, in order to suggest a reasonable modeling technique of segment connection parts, this study has conducted the field experiment and numerical analysis. According to the results of field experiment and numerical analysis, the slab, wall and base slab with mortar splice sleeves have shown that the assembling-type of waterway culvert structure behaves like an integrated structure.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.