• Title/Summary/Keyword: 조골세포

Search Result 224, Processing Time 0.031 seconds

Antioxidaitve and Differentiation Effects of Artemisia capillaris T. Extract on Hydrogen Peroxide-induced Oxidative Damage of MC3T3-E1 Osteoblast Cells (사철쑥(Artemisia capillaris T.) 추출물의 항산화 활성 및 H2O2로 산화적 스트레스를 유도한 조골세포의 활성과 분화에 미치는 영향)

  • Seo, Jee-Eun;Hwang, Eun-Sun;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1532-1536
    • /
    • 2011
  • In this study, the antioxidative activity of Artemisia capillaris T. extract on the proliferation and differentiation of MC3T3-E1 cells under $H_2O_2$-induced oxidative stress was investigated in order to determine its protective effect against oxidative stress as well as its availability as an antioxidant material related to treatment of bone diseases. As a result, the total polyphenol content of A. capillaris extract was 90.10 mg/g, whereas the flavonoid content was 4.45 mg/g. A. capillaris extract increased proliferation of MC3T3-E1 cells under $H_2O_2$-induced oxidative stress, and also increased the proliferation of differentiated osteoblast cells under oxidative stress. In addition, two differentiation markers, alkaline phosphatase activity and mineralization level, in A. capillaris extract tended to increase. These results indicate that A. capillaris extract suppresses the damage to osteoblasts caused by oxidative stress, which demonstrates its availability as an antioxidant material for preventing bone diseases.

Osteoblastogenic Activity of Locusta migratoria Ethanol Extracts on Pre-Osteoblastic MG-63 Cells (풀무치 에탄올 추출물이 MG-63 조골세포 분화에 미치는 영향)

  • Baek, Minhee;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1448-1454
    • /
    • 2018
  • Insects have been investigated as a novel source of food and biomaterial in several recent studies. However, their osteoblastogenic cell activity has not been sufficiently researched and so, to investigate the potential of this natural material for promoting osteoblastogenesis, we studied the activity of Locusta migratoria ethanol extract (LME) on MG-63 pre-osteoblast cells. The cytotoxicity and proliferation effects of LME on MG-63 cells were measured by MTS assay, and there was no cytotoxicity up to $1,000{\mu}g/ml$. With LME treatment of 500 and $1,000{\mu}g/ml$ for 48 hr, cell proliferation increased to 105% and 116% versus control, respectively. The osteoblastogenic activity of the LME was measured through alkaline phosphatase (ALP) staining at three and five days. As a result, both 500 and $1,000{\mu}g/ml$ LME concentrations were seen to increase ALP activity by more than three times compared with control at three and five days. In addition, the expression level of the osteogenic markers ALP and RUNX2 was markedly increased after LME treatment. These results demonstrate that Locusta migratoria ethanol extract promotes osteoblastogenesis as evidenced by the increased osteogenic markers and suggest that LME may be a potential agent for bone formation and osteoporosis prevention.

Effects of Glycyrrhiza inflata Batal Extracts on Adipocyte and Osteoblast Differentiation (감초추출물의 지방세포와 조골세포에 대한 분화효과)

  • Seo, Cho-Rong;Byun, Jong Seon;An, Jae Jin;Lee, JaeHwan;Hong, Joung-Woo;Jang, Sang Ho;Park, Kye Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1015-1021
    • /
    • 2013
  • Glycyrrhiza inflata Batal, an important species of licorice, is one of the most widely used medicinal plants for over 4000 years. Glycyrrhiza plant species has been well known for its various therapeutic activities such as anti-inflammatory, anti-allergic, and anti-ulcer. The purpose of this study was to determine the effects of Glycyrrhiza inflata Batal ethanol extracts (GBE) on adipocyte and osteoblast differentiation. Mesenchymal C3H10T1/2 cells were treated with sub-cytotoxic doses of GBE, and its effects on adipocyte differentiation were assessed. We found that GBE dose-dependently increased lipid accumulation and also induced the expression of adipocyte markers, such as $PPAR{\gamma}$ and its target genes, aP2, and adiponectin, in C3H10T1/2 cells. Consistently, similar effects of GBE on lipid accumulation were also observed in preadipocyte 3T3-L1 cells that further supports the pro-adipogenic activities of GBE. We also investigated the effects of GBE on osteoblast differentiation of mesenchymal C3H10T1/2 cells. As a results, we found that GBE increased the activity of alkaline phosphatase in a dose-dependent manner and also promoted the expression of osteoblast markers, such as ALP and RUNX2, during osteoblast differentiation of C3H10T1/2 cells. Similar pro-osteogenic effects of GBE were also observed in preosteoblast MC3T3-E1 cells. Finally, our data show that a major bioactive compound found in Glycyrrhiza inflata Batal, licochalcone A (LA) but not glycyrrhizic acid (GA), can mediate the pro-adipogenic and pro-osteogenic effects of GBE. Taken together, this study provides data to show the possibility of GBE and its bioactive component LA as putative strategies for type 2 diabetes and bone diseases.

Effect of Hypoxia on the Signal Transduction of Apoptosis in Osteoblasts (저산소 상태에서 조골세포 고사의 신호전달 기전)

  • Park, Young-Joo;Oh, Soh-Taek;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.453-463
    • /
    • 2003
  • Mammalian cell is critically dependent on a continuous supply of oxygen. Even brief periods of oxygen deprivation can result in profound cellular damage. The aim of this study was to examine the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3El osteoblasts under hypoxic conditions ($2\%$ oxygen) resulted in apoptosis in a time-dependent manner, determined by DNA fragmentation assay and nuclear morphology, stained with fluorescent dye (Hoechst 33258) Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-l activity (YVADase) was detected. To confirm what caspases were involved in apoptosis, western blot analysis was performed using an anticaspase-3 or 6 antibody. The 17-kDa protein, that corresponds to the active products of caspase-3 and the 20-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged lysates, in which the full length forms of caspase-3 and 6 were evident. With a time course similar to caspase-3 and 6 activation, hypoxic stress also caused the cleavage of Lamin A, typical of caspase-6 activity. In addition, the hypoxic stress elicited the release of cytochrome c into the cytosol during apoptosis. These findings suggested that the activation of caspases accompanied by a cytochrome c release in response to hypoxia was involved in apoptotic cell death in MC3T3E1 osteoblasts.

In vitro Activities of Polycalcium, a Mixture of Polycan and Calcium Lactate-Gluconate, on Osteoclasts and Osteoblasts (In vitro에서 polycalcium 복합조성물이 파골세포와 조골세포에 미치는 영향)

  • Choi, Jae-Suk;Kim, Joo-Wan;Kim, Ki-Young;Cho, Hyung-Rae;Ha, Yu-Mi;Ku, Sae-Kwang;Cho, Kwang-Keun;Choi, In-Soon
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1199-1203
    • /
    • 2011
  • The present study evaluated the beneficial effects of polycalcium (a mixture of Polycan and calcium lactate-gluconate 1:9 [g/g]) on osteoporosis using in vitro assays. Cell proliferation and alkaline phosphatase activities of osteoblasts (human primary osteoblasts) and osteoclast differentiation of RAW264.7 cells (murine osteoclast progenitor cells) treated with different concentrations of polycalcium for various periods were assessed. Osteoblast proliferation was stimulated and prevented RANKL-induced osteoclast differentiation of RAW264.7 cells. These results support the development of ideal anti-osteoporotic agents, such as polycalcium, that exhibit properties that accelerate bone formation and inhibit bone resorption.

대두의 파이토에스트로겐이 뼈에 미치는 영향

  • Kim, Seong-Ran
    • Bulletin of Food Technology
    • /
    • v.15 no.1
    • /
    • pp.3-15
    • /
    • 2002
  • 이 논문은 이소플라본과 골조직의 관계에 대하여 발표된 역학조사, 사람과 동물을 대상으로한 실험, 조직세포연구, 세포배양에서의 연구들을 포괄하고 있다. 가장 중요한 결론은 적절한 양을 투여했을 때 이소플라본, 특히 제니스테인과 다이드제인은 골밀도 증진에 효과가 있다는 것이다. 쥐를 대상으로 한 실험에서 적정 골밀도 향상 효과를 나타내기 위한 이소플라본의 invivo 투여량은 에스트라디올보다 보통 1000배가 높았다. 또한 적정 투여량보다 낮거나 높은 농도에서는 이소플라본은 뼈에 유익한 효과가 없었으며 그 때문에 이중적인 효과를 발휘한다. 유사 조골세포를 배양한 결과 중 in vitro실험에서 제니스테인의 효과는 관찰되었으나 다이드제인의 효과는 나타나지 않았다. 일반적으로 대두와 대두제품에 존재하는 이소플라본은 동물이나 사람이 적정한 양으로 섭취하였을 때 약한 에스트로겐 효과를 발휘하지만 고농도에서는 오히려 해로운 효과가 관찰될 수도 있다. 제니스테인에 대한 세포수준의 연구에서는 고농도 투여시에는 정상적인 세포기능의 소실을 유도하기도 한다고 제안되었으며, 반면 다이드제인은 같은 농도에서 유사 조골세포에 유익한 효과를 발휘한다고 하였다. 사람이 식이로부터 섭취하는 양은 부작용을 초래할 정도가 되기는 힘들다. 따라서 이소플라본은 적정한 양으로 섭취했을 때 사람의 골질량을 유지하거나 골질량을 증가시키는 잠재적인 능력이 있음이 분명하다.

  • PDF

Effects of Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture on Osteoblast Differentiation and Osteoclast Formation (방사선 육종 차조기와 백출 복합물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Sim, Boo-Yong;Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.168-177
    • /
    • 2021
  • The effects of the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture on the activities of osteoblast differentiation and the restraint of osteoclast formation were investigated. the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture in the human osteoblast "MG-63" cell, was examined in relation to alkaline phosphatase (ALP) activity and alizarin red stains. In order to observe the effects of osteoclasts formation, we analyzed RAW 264.7 cell tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains. In cytotoxicity testing, it was confirmed that apple extract is safe at a concentration of 50 ㎍/㎖ or less. The ALP activity and Bone calcification formation ability were the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture had a lower activity than that of control group. However the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture significantly reduced activity of TRAP in the RAW 264.7 osteoclastic cell generation and effectively Inhibited the TRAP(+) multinuclear cells. Thus, our results demonstrate that the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture enhances the inhibitory activity of bone-resorption in RAW 264.7 cells. In conclusion, the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture seem to be effective in the prevention and treatment of bone related disorders.

Effects of Poly-Gamma Glutamate Contents Cheonggukjang on Osteoblast Differentiation (폴리감마글루탐산(PGA) 함유량이 증가된 청국장이 조골세포 분화에 미치는 영향)

  • Lee, Ki Ho;Sim, Mi-Ok;Song, Yong Su;Jung, Ho Kyung;Jang, Ji-Hun;Kim, Min-Suk;Kim, Tae Mook;Lee, Hyo Eun;An, Byeong-Kwan;Jung, Won Seok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.664-670
    • /
    • 2016
  • Cheonggukjang (CKJ) is a Korean traditional food made of fermented soybeans. In comparison to normal intake of soybeans, Cheonggukjang has high digestibility with bioactive, antioxidant substances, and thrombolytic enzymes. Recent studies have reported anti-oxidant, anti-cancer, anti-inflammatory, anti-obesity activities as well as inhibitory activities against osteoporosis for CKJ. In this study, we identified the effects of CKJ on osteoblast differentiation by increasing the polyglutamic acid (PGA) content of CKJ. Alkaline phosphatase (ALP) activity and mineralization significantly increased in response to treatment with both natural CKJ (CKJ A) and PGA-increased CKJ (CKJ B). However, CKJ B exhibited higher ALP activity and mineralization than CKJ A. Real-time reverse transcription PCR demonstrated that mRNA expression of osteoblastic-associated genes such as type I collagen, alkaline phosphatase, osteocalcin, and osteopontin in C2C12 cells was significantly up-regulated by CKJ A or B treatment. These results indicate that treatment with CKJ has an anabolic effect on bone by increasing osteoblastic differentiation and ALP activity. Increasing PGA content in CKJ had a greater effect than CKJ A on up-regulation of osteoblastic gene expression in osteoblast cells.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.