Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.12.1448

Osteoblastogenic Activity of Locusta migratoria Ethanol Extracts on Pre-Osteoblastic MG-63 Cells  

Baek, Minhee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.28, no.12, 2018 , pp. 1448-1454 More about this Journal
Abstract
Insects have been investigated as a novel source of food and biomaterial in several recent studies. However, their osteoblastogenic cell activity has not been sufficiently researched and so, to investigate the potential of this natural material for promoting osteoblastogenesis, we studied the activity of Locusta migratoria ethanol extract (LME) on MG-63 pre-osteoblast cells. The cytotoxicity and proliferation effects of LME on MG-63 cells were measured by MTS assay, and there was no cytotoxicity up to $1,000{\mu}g/ml$. With LME treatment of 500 and $1,000{\mu}g/ml$ for 48 hr, cell proliferation increased to 105% and 116% versus control, respectively. The osteoblastogenic activity of the LME was measured through alkaline phosphatase (ALP) staining at three and five days. As a result, both 500 and $1,000{\mu}g/ml$ LME concentrations were seen to increase ALP activity by more than three times compared with control at three and five days. In addition, the expression level of the osteogenic markers ALP and RUNX2 was markedly increased after LME treatment. These results demonstrate that Locusta migratoria ethanol extract promotes osteoblastogenesis as evidenced by the increased osteogenic markers and suggest that LME may be a potential agent for bone formation and osteoporosis prevention.
Keywords
Alkaline phosphatase; bone formation; Locusta migratoria; MG-63; osteoblastogenesis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, S. M., Kim, M. G., Lee, S. Y. and Kang, T. H. 2010. Effects of Artemisia princeps Extract on bone metabolism. J. Kor. Soc. Food Sci. Nutr. 39, 363-368.   DOI
2 Liliane, S., Vanden, B. J. and Arnold, D. L. 1993. The myotropic peptides of Locusta migratoria: Structures, distribution, functions and receptors. Insect Biochem. Mol. Biol. 23, 859-881.   DOI
3 Jilka, R. L. 1988. Cytokines, bone remodeling and estrogen deficiency. Bone 23, 75-81.
4 Lim, S., Leem, J. Y., Lee, C. S., Jang, Y. J., Park, J. W. and Yoon, S. 2007. Antioxidant and cell proliferation effects of Acanthopanax senticosus extract in human osteoblast-like MG-63 cell line. Kor. J. Food Sci. Technol. 39, 694-700.
5 Metcalf, R. L. and Metcalf, R. A. 1993. Destructive and useful insects: Their habits and control, pp. 1103, 5th ed., McGraw-Hill. NY, USA.
6 Pertynski, T. and Stachowiak, G. 2006. Menopause-facts and controversies. Endokrynol. Pol. 57, 52-534.
7 Qin, G., Jia, M., Liu, T., Zhang, X., Guo, Y., Zhu, K. Y., Ma, E. and Zhang, J. 2013. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS One 8, e58410.   DOI
8 Reffitt, D. M., Ogston, N., Jugdaohsingh, R., Cheung, H. F. J., Evans, B. A. J., Thompson, R. P. H., Powell, J. J. and Hampson, G. N. 2003. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127-135.   DOI
9 Rodriguez-Carballo, E., Gamez, B. and Ventura, F. 2016. P38 MAPK signaling in osteoblast differentiation. Front. Cell Dev. Biol. 4, 40.
10 Ryoo, H. M. and Yoon, W. J. 2005. Role of transcription factors in bone and vascular mineralizaion. Endocriminol. Metab. 20, 589-596.
11 Canalis, E., McMarthy, T. and Centrella, M. 1988. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81, 277-281.   DOI
12 Shin, J. M., Park, C. K., Shin, E. J., Jo, T. H. and Hwang, I. K. 2008. Effects of Scutellaria radix extract on osteoblast differentiation and osteoclast formation. Kor. J. Food Sci. Technol. 40, 674-679.
13 Stein, G. S., Lian, J. B. and Owen, T. A. 1990. Relationship of cell growth to regulation for tissue-specific gene expression during osteoblast differentiation. FASEB J. 4, 3111-3123.   DOI
14 Arumugam, B., Balagangadharan, K. and Selvamurugan, N. 2018. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cell. J. Cell Commun. Signal. 12, 561-573.   DOI
15 Baek, M., Seo, M., Kim, M. A., Yun, E. Y. and Hwang, J. S. 2017. The antioxidant activities and hair-growth promotion effects of Tenebrio molitor larvae extracts (TMEs). J. Life Sci. 27, 1269-1275.
16 Broskey, A. L. 1992. Non-collagen matrix proteins and their role in mineralization. Bone Miner. 6, 111-123.
17 Cerritos, R. 2009. Insects as food: an ecological, social and economical approach. Perspect. Agric. Vet. Nutr. Nat. Resour. 4, 027.
18 Xing, W., Pourteymoor, S. and Mohan, S. 2011. Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiol. Genomics 43, 749-757.   DOI
19 Turkez, H., Incekara, U., Guner, A., Aydin, E., Dirican, E. and Togar, B. 2012. The cytogenetic effects of the aqueous extracts of migratory locust (Locusta migratoria L.) in vitro. Toxicol. Ind. Health 30, 233-237.
20 Weng, J. J. and Su, Y. 2013. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its reconition and activation of the alkaline phosphate gene. Biochim. Biophys. Acta 1830, 2839-2852.   DOI
21 Yoo, H. S., Chung, K. H., Lee, K. J., Kim, D. H. and An, J. H. 2017. Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling. Nutr. Res. Pract. 11, 190-197.   DOI
22 Han, S. M., Lee, S. H., Yun, C. Y., Kang, S. W., Lee, K. G., Kim, I. S., Yun, E. Y, Lee, P. J., Kim, S. Y. and Hwang, J. S. 2006. Inhibition of nitric oxide production by ladybug extracts (Harmonia axyridis) in LPS-activated BV-2 cells. Kor. J. Appl. Entomol. 45, 31-36.
23 Chao, D., Bahl, P., Houlbrook, S., Hoy, L., Harris, A. and Austyn, J. M. 1999. Human cultured dendritic cells show differential sensitivity to chemotherapy agents as assessed by the MTS assay. Br. J. Cancer 81, 1280-1284.   DOI
24 Freude, T., Braun, K. F., Haug, A., Pscherer, S., Stockle, U., Nussler, A. K. and Ehnert, S. 2012. Hyperinsulinemia reduces osteoblast activity in vitro via upregulation of TGF-${\beta}$. J. Mol. Med. 90, 1257-1266.   DOI
25 Gong, W., Dong, Y., Wang, S., Gao, X. and Chen, X. 2017. A novel nano-sized bioactive glass stimulates osteogenesis via the MAPK pathway. RSC Adv. 7, 13760-13767.   DOI
26 Harada, S. I. and Rodan, G. A. 2003. Control of osteoblast function and regulation of bone mass. Nature 423, 349-355.   DOI
27 Hinks, C. F. and Erlandson, M. A. 1994. Rearing grasshoppers and locust: Review, rationale and update. J. Orthoptera Res. 3, 1-10.
28 Hou, X., Shen, Y., Zhang, C., Zhang, L., Qin, Y., Yu, Y., Wang, L. and Sun, X. 2012. A specific oligodeoxynucleotide promotes the differentiation of osteoblasts via ERK and p38 MAPK pathways. Int. J. Mol. Sci. 13, 7902-7914.   DOI
29 Jeon, M. H. and Kim, M. 2011. Effect of Hijikia fusiforme fraction on proliferation and differentiation in osteoblastic MC3T3-E1. J. Life Sci. 21, 300-308.   DOI
30 Zeng, X. Z., He, L. G., Wang, S., Wang, K., Zhang, Y. Y., Tao, L., Li, X. J. and Liu, S. W. 2016. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-${\kappa}B$ and NFATc1 activation and DC-STAMP expression. Acta Pharmacol. Sin. 37, 255-263.   DOI
31 Lee, J. W. and Lee, I. S. 2004. Effects of Rubus coreanus Miquel extracts on the activity and differentiation of MC3T3-E1 osteoblastic cell. J. Life Sci. 14, 967-974.   DOI
32 Jeon, M. H., Kim, Y. K., Park, Y. S., Hwang, H. J., Kim, S. G., Lee, S. H., Choi, I. S. and Kim, M. 2010. Effect of pine (Pinus densiflora) needle extracts on synthesis of collagen in osteoblastic MC3T3-E1 cells. J. Life Sci. 20, 607-613.   DOI
33 Kim, H. K., Kim, M. G. and Leem, K. H. 2014. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct. 5, 573-578.   DOI
34 Kim, Y., Han, H. and Park, Y. 2015. The plan for activation of insect industry. Korea Rural Economic Institute R758, 1-148.
35 Kim, Y. H., Jung, J. K., Lee, G. S. and Koh, Y. H. 2016. Phylogenetic analysis of Locusta migratoria (Orthoptera: Acridae) in Haenam-gun, Jeollanam-do, Korea using two mitochondrial genes. Kor. J. Appl. Entomol. 55, 459-464.
36 Koo, H. J., Sohn, E. H. and Kang, S. C. 2013. The optimal combination of the mixture of unripe Rubus coreanus and Astragalus membranaceus in the activation and differentiation of osteoblastic cells. Kor. J. Plant Res. 26, 658-662.   DOI
37 Lee, M. R., Kim, J. C., Lee, S. J., Kim, S., Lee, S. J., Park, S. E., Lee, W. H. and Kim, J. S. 2017. Assessment of physiological activity of entomopathogenic fungi with insecticidal activity against locust. Kor. J. Appl. Entomol. 56, 301-308.   DOI