• Title/Summary/Keyword: 제동 토크

Search Result 41, Processing Time 0.022 seconds

A Study on the Performance and Emission Characteristics According to the Coolant Temperature of Combustion Chamber Head of Spark Ignition Engine Fuelled with Kerosene (Coal Oil) (Kerosene (Coal Oil)을 사용한 스파크점화기관의 연소실헤드 온도 변화에 따른 엔진 성능 및 배기 특성에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.92-97
    • /
    • 2017
  • Kerosene (Coal oil) is a particularly attractive fuel because it is widely used to power jet engines of aircraft as jet fuel and some rocket engine. This paper describes the performance and emission characteristics according to the collant temperature of combustion chamber head of spark ignition engine fuelled with kerosene. As a result, the following knowledge is obtained. As the collant temperature of combustion chamber head is decreased, torque, volumetric efficiency and brake specific fuel consumption have been increased. When coolant temperature of combustion chamber lower, THC emission increased but CO and $NO_x$ emission decreased.

Safety Assessment for the 3 Piece Alloy Wheel by Finite Element Method (유한요소법에 의한 3 Piece Alloy Wheel의 안전성 평가)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, En-Chul;Lee, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.885-888
    • /
    • 2009
  • 자동차용 Alloy Wheel은 차량의 수직하중이나 가로 방향 하중, 구동, 제동토크 등 주행 시에 발생하는 여러 형태의 응력을 받으면서 사용되므로 이러한 응력을 견딜 수 있는 강성은 물론 차량 부품으로서의 요구 수명도 만족하여야 한다. 알루미늄 휠은 개발 후 규격에 준하는 내구성 평가를 위하여 반경 방향 부하 내구시험과 굽힘모멘트 내구시험과 주행 중 요철이나 벽돌 등에 의한 노면으로부터 갑작스런 하중에 대한 내충격성 평가를 위한 충격시험이 실행되고 있다. 이러한 시험은 많은 시간이 소요되고 있으며, 또한 시험 중 불합격 판정이 날 경우 또다시 처음의 공정을 모두 거쳐 다시 시험을 하게 된다. 3 Piece와 같은 알루미늄 휠은 여러 공정에 의한 생산되어지기 때문에 많은 시간적, 물질적 손실이 일어나고 있다. 따라서 자동차용 알루미늄 휠의 요구조건을 충분히 만족시키며 소비자의 요구에 맞는 품질과 시간을 충족시켜 기업경쟁력 확보는 물론 원가절감에 의한 기업 경쟁력 향상을 위하여 설계 단계서부터 시험조건을 고려한 내구성 해석에 의한 알루미늄 휠의 시험횟수를 단축하고자 한다. 본 논문에서는 3 Piece 알루미늄 휠의 축(shaft)하중에 의한 내구성 평가에 대하여 CAE시스템을 이용하여 보다 빠르고 정확한 결과를 산출함으로서 설계시간의 단축은 물론 다양한 형상의 제품들을 설계단계에서부터 생산에 이르기까지의 해석활용법을 수립하고자 하였다.

  • PDF

Aerodynamic Performance Test and Evaluation by Using the Subscale HAWT Blade Model (축소모델 공력실험에 의한 수평축 풍력발전 시스템용 블레이드의 공력성능 평가에 관한 연구)

  • 공창덕;방조혁;김하봉;김종식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.39-39
    • /
    • 1998
  • 본 연구는 500KW급 수평축 풍력발전기용으로 개발된 회전날개의 시제품 제작에 앞서 축소모델에 대한, 이론적으로 예측된 공력성능과 신축에 의한 공력성능을 비교 검토함으로서, 설계결과를 검증하고, 필요한 경우 설계를 보완하여 개발위험도를 최소화하기 위해 수행되었다. 시험모델의 크기는 실제의 5%로서 직경이 2.1m이며 날개의 시위길이는 0.2r/R에서 0.101m, 날개끝에서 0.043m 이고, 날개단면형 상온 FX-S-03-182이다. 블레이드의 재질은 Glass/Epoxy 복합재료로 제작되었으며, 실제 풍황을 모사하기 위해 자연풍 상태에서 실험하였다. 실험장치의 구성은 15m 높이의 타워에 회전날개와 전자브레이크 및 각종 센서를 장착하였고, 날개가 회전하기 시작하면 제동장치에 의해 부하를 주면서 토크, 회전수, 풍속 등을 각각의 센서로부터 자료획득장치를 통해 자료처리를 할 수 있도록 하였다. 실험하는 동안 풍속은 4m/s-13m/s 정도로서 시동 풍속인 4m/s와 정격풍속인 12m/s를 포함하여 회전날개의 전체적인 특성을 파악하기 용이하였고, 이론적인 예측성능과 측정된 성능을 비교 검토한 결과 비슷한 결과를 얻어 공력설계 및 해석 방법을 검증하였다.

  • PDF

Design of Electric Automatic Manual Wheelchair Driving System (수·전동 휠체어 구동부 시스템 설계)

  • Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5392-5395
    • /
    • 2013
  • Application of electric wheelchair, sort of wheelchair which is playing important role in transporting patients and old people, has been increasing. In this study, we designed the electric wheelchairs' driving system. Using the multi-step gear, the driving system can get great power, even though the small capacity of motors. First, we designed the multi-step gear, test its bending strength and contact strength, as well as verified its performance. We installed 'B-type electric brake(Multiple plate clutch, Anti-magnetization) in same axle of the driving system, so it is possible to stop under huge torque and small size. Using this driving system of the multi-step gear which we designed, it's possible to improve driving gear efficiency 30% up and create the high-competitive electric wheelchair. And, it is easy to repair and control.

An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect (디스크 브레이크 로터 마찰면 가공 형태에 따른 성능 변화 연구)

  • Jung, Taeksu;Cha, Bawoo;Hong, Yunhwa;Kim, Cheongmin;Hong, Younghoon;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2016
  • Cross-drilling and slotting on the frictional surface of a brake rotor are methods used for improving the performance of the brake system. These shapes have particular advantages, such as the shaving effect of a slotted shape, which maintains a clean pad-to-rotor contact surface, and the venting effect of a drilled shape, which provides passageways for the gas to escape. In order to understand the effect of the machined pattern on the brake performance aspect, an experimental method is adopted along with the dynamometer test. The cross-drilled rotor, slotted rotor, and mixed pattern rotor with cross-drilling and slotting machining are prepared and tested in terms of friction coefficient, temperature, braking torque, and noise.

The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image (쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석)

  • Lee, Gap-Jin;Park, Gi-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

Design and Control of Hybrid a Powered Wheelchair for the Elderly (고령자를 위한 하이브리드형 전동 휠체어의 설계 및 제어)

  • Yoon, Tae-Su;Ann, Sung-Jo;Kim, Sang-Min;Han, Young-Bin;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1067-1076
    • /
    • 2016
  • This paper describes the development of a hybrid-powered wheelchair (HPW) for the elderly. The proposed HPW has novel mechanical and control features compared with conventional powered wheelchairs. An ergonomic back-braking mechanism was designed in order to stop the wheels easily. In terms of control features, the HPW remarkably reduces the muscle power required by combining various assistive functions, such as wheel torque assistance, friction/inertia compensation, gravity compensation, and the one-hand driving algorithm. For wheel torque assistance, strain gauges were attached to the hand-rim in order to measure the wheel torque applied by a human. Gyroscopes and an accelerometer were attached to the wheel and chair respectively for friction and inertia compensation. An inclinometer was attached for gravity compensation and the one-hand driving algorithm was included for patients who can only use one hand. The one-hand driving algorithm controls the angular velocity of the uncontrolled wheel by using a gyroscope and pressure sensors attached to the bottom of the seat. Finally, the performance of the proposed motion assisted algorithm was verified through various experiments.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Development of Caravan Sway Reduction System using the Hitch Angle Control Algorithm (히치 각도 제어 알고리즘을 통한 카라반 스웨이 저감 장치 개발)

  • Kim, Chang-Young;Yoo, Jung-Joo;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • Caravans are easily affected by external physical factors and often cause dangerous situations for passengers. Therefore, in order to secure the stability of the passenger, there is a need to develop a sway reduction device capable of preventing the sway phenomenon in advance. This paper aims to minimize the hitch angle between the tow vehicle and the caravan. Specifically, the initial instability of the caravan is detected through an IMU sensor mounted on each of the tow vehicle and the caravan, and a control value is calculated to reduce errors from the Hitch angle and Hitch yaw rate using a PID controller. Different braking torques are generated, distributed, and controlled on the left and right brakes of the caravan according to the calculated control value. It could be verified through the driving experiment that the hitch angle was decreased compared to the case where the performance of the sway reduction device was not controlled, and the transverse stability improvement rate was improved by 94.49% compared to before control.

Brake Module Assembly Using a Redundant Robot Having an 1 DOF End Effector (1 자유도 엔드 이펙터를 갖는 여유 자유도 로봇을 사용한 브레이크 모듈 조립)

  • Jeong, Jae Ung;Sung, Young-Whee;Chu, Baek-Suk;Kwon, Soon-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.104-111
    • /
    • 2014
  • In this paper, we deal with robotic automation for assembling car brake modules. A car brake module is comprises of a torque member, two brake pads, and two pad liners. In the assembly process, brake pads and pad liners are needed to be inserted in a torque member. If we use a typical robotic hand for the assembly, task time takes too long. So, we propose two methods. The first method is to use an end effector that has five grippers capable of gripping five assembly parts. In the first method we attached the implemented end effector to a conventional 6 degrees of freedom industrial manipulator and performed the bake module assembly task. Experimental results show that the task time is remarkably reduced. The brake module assembly task needs the robot to change its orientation frequently, so, in the second method, we added one degree of freedom to the end effector that is used in the first method. By attaching it to a conventional 6 degrees of freedom industrial manipulator, we composed a 7 degrees of freedom redundant manipulator. A redundant manipulator has the advantage of flexible manipulation so the robot can change its orientation easily and can perform assembly task very fast. Experimental results show that the second method dramatically reduce whole task time for brake module assembly.