• Title/Summary/Keyword: 정적변위센서

Search Result 23, Processing Time 0.018 seconds

Estimation of Structural Displacements for Cantilever Beam Using Mode Shapes and Accelerometers Under Free Vibration (모드 형상과 가속도계를 이용한 자유 진동하는 외팔보의 변위 추정)

  • Kim, Kyung Jong;Lee, Yong Hwan;Lee, Kyu Beom;Lee, Cheol Soon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.376-385
    • /
    • 2017
  • In this paper, a method for the estimation of structural displacements using structure's mode shapes and accelerations is suggested to reduce the disadvantages of acceleration time integration method. Acceleration time integration method requires accurate information on initial conditions, and errors caused by noise can be accumulated during time integration. To avoid these problems, the method for the estimation of structural displacements based on mode superposition method is developed and two vibration experiments for cantilever beam are conducted to verify this method. Static displacements and dynamic displacements of beam structure are estimated using measured accelerations from experiments and mode shapes of cantilever beam, and they are compared with measured displacements using laser displacement sensor. From these results, the validity and usefulness of this method are verified.

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Static Behavior of Hollow Cantilever Beam Using Multiplexed FBG Sensors (다중화된 FBG센서를 이용한 중공 내민보의 정적 거동 분석)

  • Lee, Tae-Hee;Kang, Dong-Hoon;Chung, Won-Seok;Mok, Young-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.316-322
    • /
    • 2009
  • This paper presents a preliminary study to monitor the lateral behavior of pile foundation using multiplexed fiber Bragg grating(FBG) sensors. In the Preliminary study, an 1.7 meter long cantilever beam with the shape of square hollow box was fabricated and tested under the static loading. Four FBG sensors were multiplexed in a single optical fiber and installed into the top and bottom of the cantilever beam. The strains are directly measured from FBG sensors followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the regression analyses based on the geometric relationships. It has been found that excellent correlation with conventional sensing system was observed. The success of the test encourages the use of the FBG sensing system as a monitoring system for pile foundations. However, further consideration should be given in the case of the sensor malfunction for the practical purpose.

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

A Study on Development of Displacement Measurement System for Structure using a Laser and 2-D Arrayed Photo Sensors (레이저와 2차원 배열의 광전검출기를 이용한 구조물의 변위측정 시스템의 개발에 관한 연구)

  • Kang, Moon-Phil;Lee, Jin-Yi;Kim, Min-Soo;Kim, Dae-Jung;Choe, Won-Ha;Kang, Ki-Hun;Kim, Jong-Soo;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2002
  • A Safety Monitoring System using a laser and 2-D arrayed photo sensors is developed. To monitor of the deformation and small rotation of structure the developed optical system using 2-D photo sensor array was used to detect the variation of optical orbit of laser which was induced by deformation of the structure. Also, an operating program to manage the system and an algorithm for the data acquisition and the database are introduced. In this study, we demonstrated the capabilities of this system by laboratory experiments before applying the system to the field.

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints (그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구)

  • Kim, Sung-Wan;Yun, Da-Woon;Kim, Jae-Bong;Jeon, Bub-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

Development of MEMS Inclinometer Sensor System (MEMS형 경사계 센서의 유효성 평가)

  • Ha, Dae Woong;Kim, Jong Moon;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Inclinometer sensors are widely applied in many fields. Especially in the field of construction of high-rise buildings also measure the horizontal and vertical help has been applied to monitor. Recent micro electro-mechanical system(MEMS) technology with the development of the many sensors have been developed. In this paper, a MEMS inclinometer is based on a MEMS accelerometer. The sensor can measure the angle of inclination using the relationship between static acceleration and gravity acceleration from an accelerometer. From this principle, inclinometer has been developed that has more accurate. The accuracy is proved by the experiment with laser displacement. Results in the experiment express high-accuracy, stability and economics of MEMS inclinometer. In conclusion, wireless MEMS inclinometer sensor is expected to be applicable in the areas of construction and many other industries with accurate and convenient monitoring system.

Development of Wireless Measurement System for Bridge Using PDA and Fiber Optical Sensor (PDA와 광섬유 센서를 이용한 교량의 무선계측 시스템 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-OK
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.88-96
    • /
    • 2009
  • This study proposes a wireless measurement system that is a new safety management system by using an FBG sensor and a PDA. The sensor part has many advantages of implementing a wireless measurement system, and the study emploies an FBG-LVDT sensor, FBG-STRAIN sensor, FBG-TEMP sensor, and FBG-ACC sensor, using FBG sensors. Also, the study show a configuration of a signal process system for operating a wireless transmission system of FBG sensors applied to the signal process system, and engrafted the cutting edge information technology industry in order to display from a remote distance using a PDA. In order to verify the applicability of the developed FBG sensors and wireless measurement monitoring system to the field, their accuracy, and usability, the study has conducted a static and dynamic test to a bridge in the field. The study made an assessment of service for the vibration of the bridge by applying dynamic data measured by an FBG-LVDT sensor and FBG-ACC sensor to Meister's curve and prepared methods for assessing the vibration of the bridge by proposing a standard of vibration limitation given the service of vibration of the bridge. As a follow up for this study, it would be necessary to set up an overall model for the standard of service assessment established in this study.

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.