DOI QR코드

DOI QR Code

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints

그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구

  • 김성완 (부산대학교 지진방재연구센터) ;
  • 윤다운 (부산대학교 지진방재연구센터) ;
  • 김재봉 (부산대학교 지진방재연구센터) ;
  • 전법규 (부산대학교 지진방재연구센터)
  • Received : 2020.12.23
  • Accepted : 2021.03.02
  • Published : 2021.04.30

Abstract

In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

본 연구에서는 NFPA 13을 참조하여 구조물 2층을 구현한 강재지그를 제작하였으며, 그루브 조인트의 배관연결재가 적용된 배관계통을 구성하고 정적 반복가력에 의한 지진모사실험을 수행하였다. 지진모사실험은 엑츄에이터로 건축물 내진설계기준의 최대허용 층간변위에 대한 반복가력실험을 수행하였다. 지진하중 발생 시 입상배관의 구조물에 대한 변형 또는 구조부재간의 상대변위에 의한 변위지배적인 거동에 따른 배관계통과 주요 배관요소의 지진거동을 분석하였다. 배관계통의 변형각은 기존의 센서를 이용하여 측정하기가 어려우므로 이미지측정시스템을 적용하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통기술촉진연구사업의 연구비지원(과제번호 21CTAP-B132921-05) 에 의해 수행되었습니다. 시험 시료(배관)를 제공해주신 (주)다성테크에 감사드립니다.

References

  1. Korea Meteorological Administration (2020), Available at: http://www.weather.go.kr/weather/earthquake_volcano/domestictrend.jsp
  2. American National Standards Institute, (2016), ANSI/FM Approvals 1950, American National Standard for Seismic Sway Braces for Pipe, Tubing and Conduit.
  3. ASCE (American Society of Civil Engineers) / SEI (Structural Engineering Institute), (2016), ASCE 7-16, Minimum Design Loads for Buildings and Other Structures.
  4. Ayres, J. M., and Phillips, R. J. (1998), Water Damage in Hospitals Resulting from the Northridge Earthquake, American Society of Heating, Refrigerating and Air-Conditioning Engineers Transactions, 104(1B), 1286-1296.
  5. Choi, S. H., Cheung, J. H., Gae, M. S., Seo, Y. D., and Kim, M. K. (2013), Seismic Capacity Test of Nuclear Piping System using Multi-platform Shake Table, Journal of the Earthquake Engineering Society of Korea, 17(1), 21-31. https://doi.org/10.5000/EESK.2013.17.1.021
  6. Gasnews (2017), Available at: http://m.gasnews.com/news/articleView.html?idxno=80551.
  7. International Code Council (2015), IBC, International Building Code.
  8. International Organization for Standardization (2013), ISO 13033, Bases for Design of Structures-Loads, Forces and Other ActionsSeismic Actions on Nonstructural Components for Building Applications.
  9. Kim, S. W., Jeon, B. G., Ahn, S. W., and Wi, S. W. (2019), A Study for Seismic Behavior of a Riser Pipe with Flexible Groove Joints Using Cyclic Loading Test, Transactions of the Korean Society for Noise and Vibration Engineering, 29(1), 67-74. https://doi.org/10.5050/KSNVE.2019.29.1.067
  10. Kim, S. W., Jeon, B. G., Ahn, S. W., and Wi, S. W. (2020), Seismic Behavior of Riser Pipes with Pressure and Groove Joints Using an In-plane Cyclic Loading Test, Journal of Building Engineering, Available online 24 October, 101911.
  11. Kim, S. W., Jeon, B. G., Cheung, J. H., and Kim, S. D. (2019), Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 77-83.
  12. Malhotra, P. K., Senseny, P. E., Braga, A. C., and Allard, R. L. (2003), Testing Sprinkler-Pipe Seismic-Brace Components, Earthquake Spectra, 19(1), 87-109. https://doi.org/10.1193/1.1543160
  13. Ministry of the Interior and Safety, (2017), Common Application Criteria for Seismic Design Standards.
  14. Ministry of Land, Infrastructure and Transport, (2019), KDS (Korean design standard) 41 17 00, Seismic building design code.
  15. Ministry of Public Safety and Security, (2016), Seismic Design Criteria of fire fighting facilities.
  16. National Fire Protection Association, (2013), NFPA 13, Standard for the Installation of Sprinkler Systems.
  17. Shirozu, T., Yune, S., Isoyama, T., and Iwamoto, T. (1996), Report on Damage to Water Distribution Pipes Caused by the 1995 Hyogoken-Nanbu (Kobe) Earthquake, The 6th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, 93-110.
  18. Trifunac, M. D., and Todorovska, M. I. (1997), Northridge, California, Earthquake of 1994: Density of Pipe Breaks and Surface Strains, Soil Dynamics and Earthquake Engineering, 16(3), 193-207. https://doi.org/10.1016/S0267-7261(96)00042-5