• Title/Summary/Keyword: 접촉 모델

Search Result 700, Processing Time 0.03 seconds

접촉 저항법을 응용한 트라이볼로지 문제점의 해석

  • 김청균
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 1994
  • 금속과 금속이 접합할 때 발생하는 고유 저항값은 접촉소재의 종류, 접촉면의 상태, 접촉조건(하중, 온도, 정적 또는 동적인 접촉 등), 주변환경에 따라서 변한다. 소재가 접촉할 때 발생되는 저항값의 변화특성을 적극적으로 이용한 것이 전기 저항법(Electrical Contact Resistance Method)이다. 접촉 저항법의 특징은 접촉시 발생되는 저항값이 미세하게 변화한다 할지라도 모두 계측이 가능하다는 점이다. 그동안의 연구는 ㅈ로 단일 접촉점(Single Contact Spots) 위주의 단편적인 실험적 연구를 통하여 접촉 저항법에 대한 신뢰도 확보에 노력하였으나, 최근에는 접촉점이 인접한 다른 접촉부위에 미치는 영향, 즉 다수 접촉점군(Multiple Contact Spots and Clusters)의 거동해석에 더욱 큰 연구 비중을 두고 있다. 접촉점군 상호간의 영향에 관한 연구가 많이 진행되기는 하였지만 해석모델의 적절성 여부가 실험적 데이타를 통하여 확인이 아직 안되었기 때문에 기존의 접촉저항 추정식을 직접 사용하기가 어려웠으나 최근에 볼군-원판 모델에 대한 접촉점과 다수의 접촉점군 상호간에 발생될 수 있는 접촉저항 특성을 실험적으로 해석하여 보다 정확한 해석모델이 제시되었다.

Dynamic Analysis of Catenary System Subjected to Moving Load (이동하중을 받는 일정장력이 작용하는 가선계의 동적해석)

  • Lee, Kyu-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the dynamic contact of a catenary system is analyzed by using the finite element method. We derive the equations of motion for the catenary system by taking into consideration tension on the catenaries. After establishing the weak form, they are spatially discretized with beam elements. Then, we analytically calculated the wave propagation speed for a string, bar, beam, and the catenaries subjected to tension. Further, finite element computer program for contact dynamic analyses is developed. Finally, we analyze the wave propagation response corresponding to the moving load to the contact line are calculated.

A Study on the Model and the Design Procedure of the Contact Stabilization Process (접촉안정법(接觸安定法)의 모델과 설계법(設計法)에 관한 연구(硏究))

  • Yang, Sang Hyon;Ahn, Song Yeob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.101-112
    • /
    • 1984
  • The mechanisms and the models of the contact stabilization process were briefly reviewed. The researchers proposed the more practical and rational models and the procedure for the design of the contact stabilization process. These models were derived from the material balances of the system based on the increase of Mixed Liquor Suspended Solids (MLSS) in. the contact tank and the decrease of MLSS in the stabilization tank. The proposed models were also discussed with the experimental data.

  • PDF

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Prediction Models for the Prying Action Force and Contact Force of a T-stub Fastened by High-Strength Bolts (고력볼트로 체결된 T-stub의 지레작용력 및 부재 접촉력 예측모델)

  • Yang, Jae Guen;Baek, Min Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.409-419
    • /
    • 2013
  • A T-stub connection with high-strength bolts under tensile force is affected by prying action force and the contact force, among others, between members. If a design equation that does not consider such prying action force and contact force between members is not proposed, the T-stub under tensile force is liable to be fractured under the strength lower than the estimated design strength. To prevent it, many studies have proposed contact force estimation equations between members as well as the prying action force of the T-stub connection with high-strength bolts. However, no design equations based on such research have been proposed in South Korea. Therefore, this study aims to propose an estimation model for more accurate prying action force and contact force, and improve on previously proposed estimation models by implementing the three-dimensional, nonlinear finite element analysis. Throughout the results of three-dimensional, nonlinear finite element analysis, the prediction model proposed in this research for the prying action force and contact force of a T-stub provided much more accurate estimation than that of a existing prediction model previously suggested.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: I. Formulation (직교 이방적 사질토의 미시역학적 탄소성 모델링: I. 정식화)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.77-88
    • /
    • 2007
  • A micromechanics-based model to simulate the elastic and elastic-plastic behavior of granular soils is developed. The model accounts for the fabric anisotropy represented by the statistical parameter of the spatial distribution of contact normals, the evolution of fabric anisotropy as a function of stress ratio, the continuous change of the co-ordination number relating to the void ratio, and the elastic and elastic-plastic microscopic contact stiffness. Using the experimental data for metallic materials, the elastic-plastic contact stiffness is derived as a power function of the normal contact force as well as the contact force initiating the yielding of contact bodies. To quantitatively assess microscopic model parameters, approximate solutions of cross-anisotropic elastic moduli are derived in terms of the micromechanical parameters.

Dynamic Interaction Analysis of Train-bridge Considering Rail-wheel Contact Mechanism (윤축-레일 접촉메카니즘을 고려한 열차-교량 동적상호작용 해석)

  • Min, Dong-Ju;Kwark, Jong-Won;Kim, Moon-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.363-373
    • /
    • 2015
  • The purpose of this study is to develop a nonlinear algorithm for the dynamic interaction analysis of KTX trains and bridge girders with consideration of separation and flange contact phenomena between wheel and rail. For this, three interaction models between wheel-rail are implemented and compared through numerical examples. That is, the spring model and the non-jump model are briefly explained, and a nonlinear contact model is then proposed to accurately simulate interaction forces of the train-bridge system. Dynamic interaction analysis of a simply supported girder and trains is performed and the analyzed results are presented and compared for the proposed contact model and the other model types. Particularly, flange contact phenomena in the nonlinear contact model are demonstrated under a specific condition.

Analysis of Traveling Wave Rotary Ultrasonic Motor using Ellipsoidal Static Contact Model (타원형 접촉면 모델을 이용한 회전형 초음파 모터의 해석)

  • Yi, Kyung-Pyo;Rho, Jong-Seok;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.664_665
    • /
    • 2009
  • 초음파모터의 동작은 기본적으로 기계적인 마찰에 의지하기 때문에, 이를 해석하기 위해서는 복잡하고 비선형적인 접촉 메커니즘에 대한 고찰이 필요하다. 본 논문에서는 타원형 접촉면 모델을 이용하여 이러한 접촉 메커니즘을 설명하고, 또한 회전자가 가하는 압력에 의해 발생하는 고정자의 변형도 고려하는 회전형 초음파 모터의 해석법을 제시한다.

  • PDF

Modeling Scheme for Calculating Encounter Probability Versus Minefleld Density (지뢰지대 밀도별 접촉확률 산정 모델링 방안)

  • Baek, Doo-Hyeon;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • The encounter probability graph is measured by the chance(in percent) that a vehicle, blindly moving through a minefield, will detonate a mine. The encounter probability graph versus minefield density is presented in ROK and US Army field manual but this graph is baseless because these data had not been presented as those of live mobility or wargame. In this paper, we verified this graph building procedure model as using computer program. The result values of program are almost like those of graph. Therefore this model for our to suggest have validation, verification that a modeling demand and we convince that this model will be useful for calculating encounter probability of multiple vehicles.