• Title/Summary/Keyword: 접착력

Search Result 707, Processing Time 0.027 seconds

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.

A STUDY ON THE MICROSCOPIC IMAGES OF DENTIN SURFACES IN PRIMARY TEETH ACCORDING TO SURFACE WETNESS AFTER ACID ETCHING (유치 상아질 산부식 후 습윤 정도에 따른 조직상)

  • Oh, Young-Jun;Jung, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.545-553
    • /
    • 2003
  • To achieve good dentin bonding, we must obtain proper wet dentin surface. The purpose of this study was to compare dentin surface according to different wetness degree by AFM image as studying how to obtaining proper wet dentin surface. Intact recently extracted primary teeth were used in the study. The extracted teeth were stored in distilled water at $4^{\circ}C$ until prepared. The teeth were used to prepare 1mm thick dentin disks with exposed surfaces parallel to the occlusal surfaces. The surface of the dentin were polished with polishing disk. The sample were ultrasonically cleaned with distilled water. The sample of each group were treated by different ways. We compared dentin surface of each group by AFM image. From the experiment, the following results were obtained. 1. Acid etching in the dentin surface of primary teeth, resulted in the removal of the smear layer, which opened dentinal tubules, caused the demineralization of peritubular and intertubular dentin, and exposed a collagen-rich transition zone. 2. If the etched dentin was so dehydrated, the intertubular dentin surfaces deceased in height and the diameters of the dentinal tubules decreased slightly. 3. In the group dried with compressed air for 20 seconds at 2 cm, the dentin surfaces were too excessive dried and dehydrated. 4. In the group dried with compressed air for 3 seconds at 2 cm, dry cotton, wet cotton, microbrush and absorbent tissue paper, the dentin surfaces were properly wet.

  • PDF

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle (알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조)

  • Cho, Dae-Hoon;Choi, Sung-Il;Go, Hyun-Mi;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2011
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

Effect of post-bleaching time intervals on resin in dentin bonding strength (미백 후 유예 기간에 따른 상아질과 레진의 결합 강도의 변화)

  • Song, Shin-Jae;Kim, Sun-Jong;Ro, Yong-Seon;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.174-181
    • /
    • 2009
  • Statement of problem: There is a reduction of dentin bonding strength when the bonding procedure is carried out immediately after bleaching with peroxides. Purpose: The aim of this study is to evaluate a proper time interval for in-office bleaching technique using 35% hydrogen peroxide. Material and methods: Fifty extracted non-caries human third molars were used in this study. Buccal enamel of each tooth was removed and polished by 600 grits silicone carbide paper. They were randomly divided into five groups and bleached 35% hydrogen peroxide except control group. All groups were bonded with Single Bond/Z 350 after each time intervals ; Group-A: control, no bleaching treatment. Group-B: resin bonding immediately after bleaching. Group-C: resin bonding 1day after bleaching. Group-D: resin bonding 2 days after bleaching. Group-E: resin bonding 7days after bleaching. Shear bond strengths were measured with a cross-head speed of 1.0 mm/min using an Instron machine. The data of results were statistically analyzed by analysis of variance(ANOVA) and Tukey multiple comparison test.(P=.05) Results: There were significant decreases in mean shear strength in immediately bonding group after bleaching. The reduction of bond strengths was 78% compared with the group of no bleaching treatment. Group C showed the recovery of 51%, and Group D showed recovery of 63%. Both of them have no statistical difference with non-bleaching group. Group E showed no statistical difference with no bleaching treatment group. Conclusion: Dentin bonding strength is significantly reduced when bonding is performed immediately after bleaching for in-office bleaching regimens using 35% hydrogen peroxide, and increases as time goes by. One week of elapsed time between bleaching and resin bonding significantly increases bonding strengths for the in-office bleaching technique.

Characterizations of Adhesion Property, Morphology and Cure Reaction of Epoxy/Polyamide/MPD Reactive Blend with Imidazole(2E4MZ-CN) Catalyst (이미다폴(2E4MZ-CN) 촉매 첨가에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 경화 반응, 형태학적 특징 및 접착력 향상 연구)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.290-296
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD/2E4MZ-CN reactive blends with various amount of catalyst were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of catalyst ranged from 0 to 3 phr, and the cure reaction occurred at $170^{\circ}C$ for 30 min. The maximum peaks in heat flow during cure reactions appeared at slightly lower temperature with increasing catalyst content, indicating that the cure reactions start at lower temperature by adding catalyst and polyamide rarely hinders the cure reaction paths. The co-continuous morphology was found in epoxy/polyamide(20 phr) blends and by adding catalyst to the blends much clearer and uniform co-continuous phase was observed. The surface tension of the mechanical test specimen was increased due to the AP plasma surface treatment, and then adhesion strength was increased by over 20% by adding 2 phr of catalyst to the blends. When considering morphological tuning of the blends by means of catalyst incorporation, it is expected that the increased elongation and adhesion strength can be achieved in the structural adhesive systems.

Preparation and Characteristics of the Blends of Polyimide and Polybenzoxazole Having Imide Ring (주사슬에 이미드고리를 갖는 Polybenzoxazole과 Polyimide의 블렌드 제조 및 특성)

  • Wee, Doo-Young;Han, Jin-Woo;Choi, Jae-Kon
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.420-430
    • /
    • 2013
  • Polymer blends were prepared by solution blending poly(amic acid) (PAA) and poly(o-hydroxy amide) (PHA) having imide groups in the main chain. The polymers and their blends were characterized by using FTIR, FT NMR, DSC, TGA, SEM, XRD, UTM, and LOI. The solubility study revealed that the blends were readily soluble in aprotic solvents such as DMF, DMAc, DMSO, and NMP. The maximum weight loss of the blends occurred in the range of $578-645^{\circ}C$, and the maximum weight loss temperature increased with increasing the PHA content. The PBO/PI blends showed relatively high char yields (i.e. 56-69 wt%). The LOI values of the blends were in the range of 24.5-28.1% and increased with increasing the PHA content. The initial modulus and tensile strength of the blends increased by 57 to 121% and by 67 to 107%, respectively, compared to the values of PAA. Especially the initial modulus and tensile strength of the PHA/PAA=2/8(wt/wt) showed the highest values of 4.87 GPa and 108 MPa, respectively. The PHA domains of $0.03-0.1{\mu}m$ in their size were more or less uniformly dispersed. The interfacial adhesion between PAA and PHA was found to be good.

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

Design and Properties of Laminating Waterborne PSA for Eco-friendly Flexible Food Packaging (식품연포장용 라미네이트 수성 감압점착제의 친환경적 적용에 대한 연구)

  • Lee, Jin-Kyoung;Shim, Myoung-Sik;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • In this study, we designed an environment friendly, water-based adhesive using the acrylic emulsion method as a replacement for solvent-based adhesives, which are most commonly used in layered laminates for flexible food packaging. We designed adhesives with different combinations of anionic, non-ionic, and phosphoric ester surfactants, and with different concentrations of chain transfer agent (CTA). We also examined the effect of the degree of cross-linking by synthesizing and comparing 8 test group adhesives with different types of functional monomers. Additionally, we synthesized 2 other test group pressure-sensitive adhesives (PSA) using styrene/alpha-methyl styrene/acrylic acid (SAA) semipolymer dispersing agents (with molecular weights of 13,000 g/mol and 8,600 g/mol, respectively) to replace the conventional surfactants. We evaluated whether the 10 test group pressure-sensitive adhesives met the basic physical property criteria required for flexible food packaging by carrying out a physical analysis of their glass transition temperature (Tg), particle size, adhesion, and molecular weight. In our test, 2 test group adhesives manufactured with the combination of anionic and non-ionic surfactants, CTA concentration of 0.2%, and functional monomers of hydroxyethyl acrylate (HEA) and glycidyl methacrylate (GMA) demonstrated molecular weight and flexibility suitable for flexible packaging, with low adhesiveness and small particle size.