Browse > Article
http://dx.doi.org/10.17702/jai.2011.12.1.016

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle  

Cho, Dae-Hoon (Department of Chemical Engineering, Dong-A University)
Choi, Sung-Il (Department of Chemical Engineering, Dong-A University)
Go, Hyun-Mi (Department of Chemical Engineering, Dong-A University)
Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
Publication Information
Journal of Adhesion and Interface / v.12, no.1, 2011 , pp. 16-25 More about this Journal
Abstract
Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.
Keywords
multi core-shell composite particle; water-born emulsion polymerization; adhesive binder; tensile strength and elongation; glass transiton temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. H. Sim and S. D. Seul, Polymer, 32, 276 (2008).
2 S. R. Lee and S. D. Seul, Korean J. Chem. Emg., 19, 318 (2002).   DOI   ScienceOn
3 W. W. Mooncai, Adhesive Age, 31, 33 (1998).
4 P. Tosdjeman and E. Papon, J. Appl. Polymer. Sci., 38, 1201 (2000).   DOI
5 S. D. Seul and J. M. Lim, Polymer, 28, 135 (2004).
6 D. H. Sim and S. D. Seul, Polymer, 32, 433 (2008).
7 D. H. Sim and S. D. Seul, Polymer, 33, 45 (2009).
8 D. H. Sim and S. D. Seul, Polymer, 33, 230 (2009).
9 M. Okubo, A. Yamada, and T. Matsumoto, J. Polym. Sci. Polym. Letters. Ed., 18, 3219 (1980).
10 K. C. Lee, Polymer, 21, 348 (1997).
11 S. D. Seul, Polymer, 34, 38 (2010).
12 D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 8, 2617 (1970).   DOI
13 D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 8, 2733 (1970).   DOI
14 P. Ksusch and D. J. William, J. Polym. Sci. Polym. Chem. Ed., 11, 143 (1973).   DOI
15 D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 11, 301 (1973).   DOI
16 D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 12, 3123 (1974).
17 R. Patsiga, M. Litt, and V. Stannett, J. Phys, Chem., 64, 801 (1960).   DOI
18 L. J. Hyghes and G. L. Brown, J. Appl. Polym. Sci., 5, 580 (1961).   DOI
19 M. Okubo, M. Seike, and T. Matsumoto, J. Appl. Polym. Sci., 28, 383 (1983).   DOI   ScienceOn
20 T. I. Min, A. Klein, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Polym. Chem. Ed., 22, 2197 (1984).   DOI
21 M. S. Kim and S. D. Seul, Polymer, 33, 230 (2009).
22 M. S. Sim, J. E. Ban, M. S. Kim, and S. D. Seul, Polymer, 32, 470 (2008).
23 T. G. Kim, Ph. D. Thesis, Pusan National University, Pusan (2010).