• Title/Summary/Keyword: 절사평균

Search Result 18, Processing Time 0.227 seconds

A Test for Randomness of the Binary Random Sequence (이진확률수열의 무작위성 검정)

  • Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • A test for randomness of the binary random sequence is proposed in this paper. The proposed test statistic is based on the mean length of runs distributed with truncated geometric distribution and asymptotically ${\chi}^2_2$-distributed when the size of the sequences is large. A small Monte Carlo simulation compared the size of the test with a significant level as well as evaluated the test power. We applied the proposed method to the sequence of yes or no numbers in Lotto 6/45 and concluded that the randomness of Lotto is retained.

GPS Implementation for GIS Coverage Map (GPS 측량시스템을 이용한 GIS 커버리지 맵 구현)

  • 임삼성;노현호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.197-203
    • /
    • 1999
  • Depending on geographical features and error sources in the survey field, inaccurate data is inevitable in GPS kinematic survey for positioning with feature codes. In this study, the trimmed mean and the first order differential equation are used to develop an inaccurate positioning data detection algorithm, and a cubic spline curve and a linear polynomial are used to interpolate the inaccurate data. Based on interpolated data, a digital map for 30 km range of rural highway is produced and a corresponding GIS coverage map is obtained by analyzing and solving the problem associated with the map.

  • PDF

Fixed-Width Booth-folding Squarer Design (고정길이 Booth-Folding 제곱기 디자인)

  • Cho Kyung-Ju;Chung Jin-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.832-837
    • /
    • 2005
  • This paper presents a design method for fixed-width squarer that receives a W-bit input and produces a W-bit squared product. To efficiently compensate for the quantization error, modified Booth encoder signals (not multiplier coefficients) are used for the generation of error compensation bias. The truncated bits are divided into two groups (major/minor group) depending upon their effects on the quantization error. Then, different error compensation methods are applied to each group. By simulations, it is shown that the performance of the proposed method is close to that of the rounding method and much better than that of the truncation method and conventional method. It is also shown that the proposed method leads to up to $28\%\;and\;27\%$ reduction in area and power consumption compared with the ideal squarers, respectively.

A Collaborative Filtering-based Recommendation System with Relative Classification and Estimation Revision based on Time (상대적 분류 방법과 시간에 따른 평가값 보정을 적용한 협력적 필터링 기반 추천 시스템)

  • Lee, Se-Il;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • In the recommendation system that recommends services to a specific user by using the estimation value of other users for users' recommendation service, collaborative filtering methods are widely used. But such recommendation systems have problems that exact classification is not possible because a specific user is classified to already classified group in the course of clustering and inexact result can be recommended in case of big errors in users' estimation values. In this paper, in order to increase estimation accuracy, the researchers suggest a recommendation system that applies collaborative filtering after reclassifying on the basis of a specific user's classification items and then finding and correcting the estimation values of the users beyond the critical value of time. This system uses a method where a specific user is not classified to already classified group in the course of clustering but a group is reorganized on the basis of the specific user. In addition, the researchers correct estimation information by cutting off the subordinate 10% from the trimmed mean of samples and then applies weight over time to the remaining data. As the result of an experiment, the suggested method demonstrated about 14.9%'s more accurate estimation result in case of using MAE than general collaborative filtering method.

A Study on the Safe Blasting Design by Statistical Analysis of Ground Vibration for Vibration Controlled Blasting in Urban Area (II) (도심지 미진동 제어발파에서 진동분석을 통한 안전 발파설계에 관한 연구(II) - 진동측정 자료의 통계적 분석을 위주로 -)

  • 김영환;안명석;박종남;강대우;이창우
    • Explosives and Blasting
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • Abstract The characteristics of bed rock in the study area was classified by means of the crack coefficient estimated from the seismic velocities of in-situ and intact rocks. Various statistical methods were investigated in order to minimize the possible errors in estimating the predictive equation of blasting vibration and to enhance the determination coefficient $R^2$, for more reliable estimation. The determination coefficient showed the highest in the analysis for those groups using weighting function with the number of samples. The analysis for the weighting function employed with standard coefficient and variance also enhanced the determination coefficients significantly compared to the others, but the reliability was slightly lower than results obtained former method. Therefore the most reliable predictive equation of blasting vibration was found to be obtained from a regression analysis of the mean vibration level using the weighting of same distance groups within 15m with the same explosive charge weight per delay. The coefficients, K and n 317.4 and -1.66, respectively, when using the square root scaling, and 209.9 and -1.66, respectively, when using the cube root scaling. The analysis also showed that the square root scaling may be used in the distance less than 31m form the blast source, and the cube root scaling in the distance more than 31m for safe design.

  • PDF

A simulation study for various propensity score weighting methods in clinical problematic situations (임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구)

  • Siseong Jeong;Eun Jeong Min
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.381-397
    • /
    • 2023
  • The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment effect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted differences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment effects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often suffered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.

Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass (유방종괴에 대한 BI-RADS범주를 이용한 횡탄성 초음파와 병리결과 비교분석)

  • An, Hyun;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.217-223
    • /
    • 2018
  • This study to search the diagnostic performance of shear wave elastography(SWE) in breast mass and to compare the biopsy result and stiffness obtained from shear wave elastography. Diagnostic breast ultrasonography and SWE were targeted for 157 patients who had breast ultrasonography was diagnosed mass from June 2017 to September 2017. Pathology results of 157 patients showed a benign 92 patients(Age, $44.54{\pm}11.84$) and a malignancy 65 patients(Age, $51.55{\pm}10.54$). Final evaluation, biopsy result, and quantitative SWE result were obtained and compared with each other according to Breast Imaging Reporting and Data System(BI-RADS) of diagnostic breast ultrasonography. Quantitative SWE value and pathologic result showed the highest diagnostic specificity of 83.70% in Emean and sensitivity of 89.23% in Emin. Quantitative SWE result and biopsy result is statistically significant.(p=0.000). The optimal cut-off value for malignant lesions was 66.3 kPa and 63.7 kPa, respectively, for the sensitivity, specificity, high maximum mean elasticity value(Emax) and mean elasticity value(Emean) and this showed the highest diagnostic area under the ROC curve(Az) value compared to other SWE measurement(p=0.000). The addition of SWE to conventional US in breast mass make a increase diagnostic specificity and reduce unnecessary biopsy. Therefore, it is expected that it will be helpful to analyze the breast mass using the above analysis and apparatus.

Low-power FFT/IFFT Processor for Wireless LAN Modem (무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계)

  • Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1263-1270
    • /
    • 2004
  • A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.