DOI QR코드

DOI QR Code

Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass

유방종괴에 대한 BI-RADS범주를 이용한 횡탄성 초음파와 병리결과 비교분석

  • An, Hyun (Department of Radiology, Inje University Busan Paik Hospital) ;
  • Im, In-Chul (Department of Radiological Science, Dong Eui University of Busan)
  • 안현 (인제대학교 부산 백병원 영상의학과) ;
  • 임인철 (동의대학교 방사선학과)
  • Received : 2018.03.02
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

This study to search the diagnostic performance of shear wave elastography(SWE) in breast mass and to compare the biopsy result and stiffness obtained from shear wave elastography. Diagnostic breast ultrasonography and SWE were targeted for 157 patients who had breast ultrasonography was diagnosed mass from June 2017 to September 2017. Pathology results of 157 patients showed a benign 92 patients(Age, $44.54{\pm}11.84$) and a malignancy 65 patients(Age, $51.55{\pm}10.54$). Final evaluation, biopsy result, and quantitative SWE result were obtained and compared with each other according to Breast Imaging Reporting and Data System(BI-RADS) of diagnostic breast ultrasonography. Quantitative SWE value and pathologic result showed the highest diagnostic specificity of 83.70% in Emean and sensitivity of 89.23% in Emin. Quantitative SWE result and biopsy result is statistically significant.(p=0.000). The optimal cut-off value for malignant lesions was 66.3 kPa and 63.7 kPa, respectively, for the sensitivity, specificity, high maximum mean elasticity value(Emax) and mean elasticity value(Emean) and this showed the highest diagnostic area under the ROC curve(Az) value compared to other SWE measurement(p=0.000). The addition of SWE to conventional US in breast mass make a increase diagnostic specificity and reduce unnecessary biopsy. Therefore, it is expected that it will be helpful to analyze the breast mass using the above analysis and apparatus.

본 연구는 유방종괴에서 횡탄성 초음파검사(SWE)의 진단 수행도를 알아보고, 조직검사 결과와 SWE에서 얻어지는 강성도와 비교하고자 하였다. 진단적 유방 초음파와 SWE를 2017년 6월부터 2017년 9월까지 유방 초음파 검사 상 종괴가 발견된 환자 157명을 대상으로 하였다. 157명의 병리학적 결과는 양성 92명(나이, $44.54{\pm}11.84$), 악성 65명(나이, $51.55{\pm}10.54$)으로 나타났다. 진단적 유방 초음파의 유방영상보고데이터체계(BI-RADS)에 따른 최종 평가, 조직검사 결과, 정량적 SWE 결과를 구하고 서로 비교하였다. 정량적 SWE 수치와 병리학적 결과에서 진단 특이도는 평균탄성값(Emean)에서 83.70%로 가장 높게 나왔으며, 민감도는 최소탄성값(Emin)에서 89.23%로 가장 높게 나타났다. 정량적 SWE값과 조직검사결과와는 통계학적으로 유의한 차이를 나타내었다.(p=0.000) 악성병변에서 최적의 절사값(cut-off value)은 민감도, 특이도가 높은 최대탄성값(Emax), 평균탄성값(Emean)에서 66.3 kPa, 63.7 kPa로 나타났으며 이는 다른 SWE 측정 수치들과 비교했을 때 가장 높은 진단 곡선 하 면적(area under the curve; AUC)값을 보였다.(p=0.000) 유방종괴에서 기존의 초음파에서 SWE를 추가적으로 시행하는 것은 진단 특이도를 높이고 불필요한 조직검사를 줄일 수 있다. 따라서 상기 분석법 및 기기를 이용하여 유방종괴를 분석하는 데에 도움을 받을 수 있게 될 것으로 기대한다.

Keywords

References

  1. K. Kerlikowske, D. Grady, J. Barclay, E. A. Sickles, V. Ernster, "Effect of Age, Breast Density, and Family History on the Sensitivity of First Screening Mammography", Journal of American Medical Association. Vol. 276, No. 1, pp. 33-8, 1996. https://doi.org/10.1001/jama.1996.03540010035027
  2. H. D. Lee, H. B. Park, J. Y. Koo, S. M. Oh, J. Y. Lim, K. H. Cha, et al. "Study for M-mammographic Patterns of Korean Breast Cancer", Journal of Korean Breast Cancer. Vol. 2, No. 1, pp. 86-94, 1999. https://doi.org/10.4048/jkbcs.1999.2.1.86
  3. Breast Imaging Reporting and Data System (BI-RADS). http://www.acr.org.
  4. A. Athanasiou, A. Tardivon, M. Tanter, B. Sigal-Zafrani, J. Bercoff, T. Deffieux, "Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging-Preliminary Results", Radiology. Vol. 256, No. 1, pp. 297-303, 2010. https://doi.org/10.1148/radiol.10090385
  5. J. L. Duncan, 3rd, G. J. Cederbom, J. L. Champaign, D. H. Smetherman, T. A. King, G. H. Farr, "Benign Diagnosis by Image-Guided Core-Needle Breast Biopsy", The American Surgeon, Vol. 66, No. 1, pp. 5-9, 2000.
  6. S. Y. Chiou, Y. H. Chou, H. J. Chiou, H. K. Wang, C. M. Tiu, L. M. Tseng, "Sonographic Features of Nonpalpable Breast Cancer: A Study Based on Ultrasound-guided Wire-localized Surgical Biopsies", Ultrasound Medicine Biology, Vol. 32, No. 9, pp. 1299-1306, 2006. https://doi.org/10.1016/j.ultrasmedbio.2006.05.018
  7. B. H. Jo, Y. J. Kim, S. Y. Chang, H. J. Kim, H. J. Moon, Y. S. Park, I. K. Lee, D. I. Kim, W. H. Lee, J. K. Ryu, M. H. Choi, Y. R. Lee, H. S. Yoon, S. O. Yoon, "Histopathologic Analysis of BI-RADS Category 4a Breast Lesions Diagnosed by Ultrasonography", Journal of Breast Cancer, Vol. 11, No. 3, pp. 139-145, 2008. https://doi.org/10.4048/jbc.2008.11.3.139
  8. J H. Youk, E. K. Kim, M. J. Kim, et al. "Concordant or Discordant Imaging-pathology Correlation in a Sonography Guided Core Needle Biopsy of a Breast Lesion", Journal of Korea Radiology, Vol. 12, No. 2, pp. 232-240, 2011. https://doi.org/10.3348/kjr.2011.12.2.232
  9. A. Itoh, E. Ueno, E. Tohno, et al. "Breast Disease: Clinical Application of US Elastography for Diagnosis", Radiology, Vol. 239, No. 2, pp. 341-350, 2006. https://doi.org/10.1148/radiol.2391041676
  10. E. F. Fleury, J. C. Fleury, S. Piato, D. Roveda, "New Elastographic Classification of Breast Lesions During and After Compression", Diagnostic and Interventional Radiology, Vol. 15, No. 2, pp. 96-103, 2009.
  11. E. S. Burnside, T. J. Hall, et al, "Differentiating Benign from Malignant Solid Breast Masses with US Strain Imaging", Radiology, Vol. 245, No. 2, pp. 401-410, 2007. https://doi.org/10.1148/radiol.2452061805
  12. D. M. Regner, G. K. Hesley, N. J. Hangiandreou, et al, "Breast lesions: Evaluation with US Strain Imaging-Clinical Experience of Multiple Observers", Radiology, Vol. 238, No. 2, pp. 425-437, 2006. https://doi.org/10.1148/radiol.2381041336
  13. A. Athanasiou, A. Tardivon, M. Tanter, et al, "Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging-Preliminary Results", Radiology, Vol. 256, No. 1, pp. 297-303, 2010. https://doi.org/10.1148/radiol.10090385
  14. J. Bercoff, M. Tanter, M. Fink, "Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity mapping", IEEE Transactions on Ultrasonics Ferroelectrics and Frequency control, Vol. 51, No. 4, pp. 396-409, 2004. https://doi.org/10.1109/TUFFC.2004.1295425
  15. J. Bercoff, M. Tanter, M. Muller, M. Fink, "The Role of Viscosity in the Impulse Diffraction Field of Elastic Waves Induced by the Acoustic Radiation Force", IEEE Transactions Ultrasonics Ferroelectric Frequency Control, Vol. 51, No. 11, pp. 1523-1536, 2004. https://doi.org/10.1109/TUFFC.2004.1367494
  16. J. Bercoff, S. Chaffai, M. Tanter, et al, "In Vivo Breast Tumor Detectionusing Tansient Elastography", Ultrasound Medicine Biology, Vol. 29, No. 10, pp. 1387-1396, 2003. https://doi.org/10.1016/S0301-5629(03)00978-5
  17. M. Tanter, J. Bercoff, A. Athanasiou, et al, "Quantitative Assessment of Breast Lesion Viscoelasticity: Initial Clinical Results Using Supersonic Shear Imaging", Ultrasound Medicine Biology, Vol. 34, No. 9, pp. 1373-1386, 2008. https://doi.org/10.1016/j.ultrasmedbio.2008.02.002
  18. J. M. Chang, W. K. Moon, N. Cho, A. Yi, H. R. Koo, W. Han, D. Y. Noh, H. G. Moon, S. J. Kim, "Clinical Application of Shear Wave Elastography(SWE) in the Diagnosis of Benign and Malignant Breast Diseases", Springer Science+Business Media LLC, Vol. 129, No. 1, pp. 89-97, 2011.
  19. Breast Imaging Reporting and Data System (BI-RADS): Ultrasound. Reston, VA: American College of Radiology, 2003
  20. A. Athanasiou, A. Tardivon, M. Tanter, et al, "Breast Lesions-Quantitative Elastography with Supersonic Shear Imaging-Preliminary Results", Radiology, Vol. 256, No. 1, pp. 297-303, 2010. https://doi.org/10.1148/radiol.10090385
  21. A. Evans, P. Whelehan, K. Thomson, et al, "Quantitative Shear Wave Ultrasound Elastography: Initial Experience in Solid Breast Masses", Breast Cancer Research, Vol. 12, No. 6, pp. R104, 2010. https://doi.org/10.1186/bcr2787