• Title/Summary/Keyword: 전자 하드웨어

Search Result 1,673, Processing Time 0.025 seconds

A study on realtime Job Scheduling for Portable Devices (포터블 기기의 실시간 처리를 위한 Job Scheduling에 관한 연구)

  • 장석우;박인규
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.989-992
    • /
    • 1999
  • Battery로 작동되고, 소형인 제품들도 다양한 기능은 물론이고, 다양한 입출력 장치를 갖추고, 실시간으로 처리하는 시스템이 많이 요구되고 있는 실정이며, 점차 더욱 더 요구될 것으로 전망된다. 더욱이 포터블 기기는 일반적으로 MCU의 내부에 제한된 ROM type 메모리를 내장하게 되면, 데이터 메모리로 SRAM 및 flash memory를 갗추고 있다. 따라서 이러한 제한된 하드웨어 환경하에서 많은 기능을 수행해야 하는 경우가 많다. 여러 기능을 시간적인 간격으로 배분하거나, 기능 자체를 서로 배분하면서, 서로 융합하는 등의 여러 가지 기능을 수행하려다보면, 당연히 메인 소프트웨어 구조가 복잡해지며 대부분 어셈블리나 C와 같은 linear한 구조를 가지는 language로 개발되기 때문에 효과적인 프로그램 구조를 세우기는 쉽지 않다. 본 논문에서는 이를 위해 좀더 규격화된 방법을 제시하고자 한다. 보다 구체적인 구조를 연구할 목적으로 다양한 테스크를 수행하여야 하는 시스템이면서 프로세서가 필요한 포터블 기기의 한 응용 제품인 MP3 Player 에서 요구되는 job scheduling을 연구한다. 필요한 작업의 종류는 가장 부하가 많이 걸리는 압축된 MP3 file을 다시 복원시켜주는 codec 부분과 일정 시간 간격을 가지고 수행하여야 하는 외부 키보드 입력과 실시간으로 시간을 계산하는 타이머 기능, 그리고 LCD에 시간의 변화를 표시하여 주어야한다. 이와같이 수시로 작업이 발생하지만 시간 점유율이 중간 정도인 LCD 컨트롤과 메모리 컨트롤 등이다. 프로세서의 속도를 최소한으로 줄이면서 스케줄링에 의해 시간 문제를 해결하는 방법을 제시하도록 한다. 이는 기초과학 수준이 높은 북방권 국가들의 과학자들이 주로 활용되고 있다는 점에서도 잘 알 수 있으며 우리의 과학기술 약점을 보완하는 원천으로써 외국인 연구 인력이 대안이 되고 있음을 시사한다. 본 연구에서는 한국 연구 조직에서 일하는 외국인 연구자들의 동기 및 성과에 영향을 미치는 많은 요인들을 확인할 수 있었다. 상관관계, 분산분석, 회귀분석 등을 통해 활용 성과에 미치는 영향 요인들을 도출하였다. 설문 분석을 통하여 동기 및 성과 사이에는 강한 상관관계가 존재하는 것을 확인할 수 있었으며 이는 전통적인 동기 이론들과 부합한다. 대부분의 변수가 동기 및 성과에 동시에 영향을 미치는 것으로 조사되었으며 그중에서도 조직 협력 문화, 외국인 연구자의 의사소통 및 협력성, 외국인 연구자의 연구 능력 관련 변수들 및 연구 프로젝트의 기술수명주기, 외국인 연구자의 기존 기술지식의 흡수 등이 가장 중요한 변수로 나타났다. 이는 우리가 주로 중국 및 러시아 과학자들을 활용하여 상업화하는 외국인 연구인력 활용 패턴과도 일치하는 결과이다. 즉 우호적인 조직문화를 가지고 있는 연구 조직에서, 이미 과학기술 지식을 많이 가지고 있고 연구 능력도 높은 외국인 과학기술자를, 한국에서 기술이 태동 또는 성장하고 있는 연구 분야에서 활용하는 것이 가장 성과가 좋다는 사실을 확인시켜 주고 있다. 국내에서 최초로 수행된 본 연구는 외국인 연구 인력의 활용 성과가 매우 높으며, 우리의 과학기술혁신시스템을 보완하는 유효한 수단으로써 외국인 연구 인력이 중요한 대안이 될 수 있음을 발견하였다. 외국인 연구 인력을 잘 활용하기 위하여 문제점 및 개선방안을 활용 환경, 연구 인력이 중요한 대안이 될 수

  • PDF

Design and Verification of Efficient On-Chip Debugger for Core-A (Core-A를 위한 효율적인 On-Chip Debugger 설계 및 검증)

  • Xu, Jingzhe;Park, Hyung-Bae;Jung, Seung-Pyo;Park, Ju-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.50-61
    • /
    • 2010
  • Nowadays, the SoC is watched by all over the world with interest. The design trend of the SoC is hardware and software co-design which includes the design of hardware structure in RTL level and the development of embedded software. Also the technology is toward deep-submicron and the observability of the SoC's internal state is not easy. Because of the above reasons, the SoC debug is very difficult and time-consuming. So we need a reliable debugger to find the bugs in the SoC and embedded software. In this paper, we developed a hardware debugger named OCD. It is based on IEEE 1140.1 JTAG standard. In order to verify the operation of OCD, it is integrated into the 32bit RISC processor - Core-A (Core-A is the unique embedded processor designed by Korea) and is tested by interconnecting with software debugger. When embedding the OCD in Core-A, there is 14.7% gate count overhead. We can modify the DCU which occupies 2% gate count in OCD to adapt with other processors as a debugger.

Efficient DRAM Buffer Access Scheduling Techniques for SSD Storage System (SSD 스토리지 시스템을 위한 효율적인 DRAM 버퍼 액세스 스케줄링 기법)

  • Park, Jun-Su;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.48-56
    • /
    • 2011
  • Recently, new storage device SSD(Solid State Disk) based on NAND flash memory is gradually replacing HDD(Hard Disk Drive) in mobile device and thus a variety of research efforts are going on to find the cost-effective ways of performance improvement. By increasing the NAND flash channels in order to enhance the bandwidth through parallel processing, DRAM buffer which acts as a buffer cache between host(PC) and NAND flash has become the bottleneck point. To resolve this problem, this paper proposes an efficient low-cost scheme to increase SSD performance by improving DRAM buffer bandwidth through scheduling techniques which utilize DRAM multi-banks. When both host and NAND flash multi-channels request access to DRAM buffer concurrently, the proposed technique checks their destination and then schedules appropriately considering properties of DRAMs. It can reduce overheads of bank active time and row latency significantly and thus optimizes DRAM buffer bandwidth utilization. The result reveals that the proposed technique improves the SSD performance by 47.4% in read and 47.7% in write operation respectively compared to conventional methods with negligible changes and increases in the hardware.

Evaluation Toolkit for K-FPGA Fabric Architectures (K-FPGA 패브릭 구조의 평가 툴킷)

  • Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.15-25
    • /
    • 2012
  • The research on the FPGA CAD tools in academia has been lacking practicality due to the underlying FPGA fabric architecture which is too simple and inefficient to be applied for commercial FPGAs. Recently, the database of placement positions and routing graphs on commercial FPGA architectures has been built, and provided for enabling the academic development of placement and routing tools. To extend the limit of academic CAD tools even further, we have developed the evaluation toolkit for the K-FPGA architecture which is under development. By providing interface for exchanging data with a commercial FPGA toolkit at every step of mapping, packing, placement and routing in the tool chain, the toolkit enables individual tools to be developed without waiting for the results of the preceding step, and with no dependency on the quality of the results, and compared in detail with commercial tools at any step. Also, the fabric primitive library is developed by extracting the prototype from a reporting file of a commercial FPGA, restructuring it, and modeling the behavior of basic gates. This library can be used as the benchmarking target, and a reference design for new FPGA architectures. Since the architecture is described in a standard HDL which is familiar with hardware designers, and read in the tools rather than hard coded, the tools are "data-driven", and tolerable with the architectural changes due to the design space exploration. The experiments confirm that the developed library is correct, and the functional correctness of applications implemented on the FPGA fabric can be validated by simulation. The placement and routing tools are under development. The completion of the toolkit will enable the development of practical FPGA architectures which, in return, will synergically animate the research on optimization CAD tools.

Control Unit Design and Implementation for SIMD Programmable Unified Shader (SIMD 프로그래머블 통합 셰이더를 위한 제어 유닛 설계 및 구현)

  • Kim, Kyeong-Seob;Lee, Yun-Sub;Yu, Byung-Cheol;Jung, Jin-Ha;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.37-47
    • /
    • 2011
  • Real picture like high quality computer graphic is widely used in various fields and shader processor, a key part of a graphic processor, has been advanced to programmable unified shader. However, The existing graphic processors have been optimized to commercial algorithms, so development of an algorithm which is not based on it requires an independent shader processor. In this paper, we have designed and implemented a control unit to support high quality 3 dimensional computer graphic image on programmable integrated shader processor. We have done evaluation through functional level simulation of designed control unit. Hardware resource usage rate are measured by implementing directly on FPGA Virtex-4 and execution speed are verified by applying ASIC library. the result of an evaluation shows that the control unit has the commands more about 1.5 times compared to the other shader processors that is a behavior similar to the control unit and with a number of processing units used in a shader processor, compared with the other processors, overall performance of the control unit is improved about 3.1 GFLOPS.

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

Implementation of a QoS routing path control based on KREONET OpenFlow Network Test-bed (KREONET OpenFlow 네트워크 테스트베드 기반의 QoS 라우팅 경로 제어 구현)

  • Kim, Seung-Ju;Min, Seok-Hong;Kim, Byung-Chul;Lee, Jae-Yong;Hong, Won-Taek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.35-46
    • /
    • 2011
  • Future Internet should support more efficient mobility management, flexible traffic engineering and various emerging new services. So, lots of traffic engineering techniques have been suggested and developed, but it's impossible to apply them on the current running commercial Internet. To overcome this problem, OpenFlow protocol was proposed as a technique to control network equipments using network controller with various networking applications. It is a software defined network, so researchers can verify their own traffic engineering techniques by applying them on the controller. In addition, for high-speed packet processing in the OpenFlow network, programmable NetFPGA card with four 1G-interfaces and commercial Procurve OpenFlow switches can be used. In this paper, we implement an OpenFlow test-bed using hardware-accelerated NetFPGA cards and Procurve switches on the KREONET, and implement CSPF (Constraint-based Shortest Path First) algorithm, which is one of popular QoS routing algorithms, and apply it on the large-scale testbed to verify performance and efficiency of multimedia traffic engineering scheme in Future Internet.

System Diagnosis and MEMS Driving Circuits Design using Low Power Sensors (저 전력 센서를 이용한 MEMS 회로의 구현과 시스템 효율의 진단)

  • Kim, Tae-Wan;Ko, Soo-Eun;Jabbar, Hamid;Lee, Jong-Min;Choi, Sung-Soo;Lee, Jang-Ho;Jeong, Tai-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Many machineries and equipments are being changing to various and complicated by development of recent technology and arrival of convergence age in distant future. These various and complicate equipments need more precise outcomes and low-power consumption sensors to get close and exact results. In this paper, we proposed fault tolerance and feedback theorem for sensor network and MEMS circuit which has a benefit of energy efficiency through wireless sensor network. The system is provided with independent sensor communication if possible as unused action, using idle condition of system and is proposed the least number of circuits. These technologies compared system efficiency after examining product of each Moving Distance by developed sensor which gives effects to execution of system witch is reduced things like control of management side and requirement for hardware, time, and interaction problems. This system is designed for practical application; however, it can be applied to a normal life and production environment such as "Ubiquitous City", "Factory Automata ion Process", and "Real-time Operating System", etc.

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

An Implementation of Low Power MAC using Improvement of Multiply/Subtract Operation Method and PTL Circuit Design Methodology (승/감산 연산방법의 개선 및 PTL회로설계 기법을 이용한 저전력 MAC의 구현)

  • Sim, Gi-Hak;O, Ik-Gyun;Hong, Sang-Min;Yu, Beom-Seon;Lee, Gi-Yeong;Jo, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.60-70
    • /
    • 2000
  • An 8$\times$8+20-bit MAC is designed with low power design methodologies at each of the system design levels. At algorithm level, a new method for multipl $y_tract operation is proposed, and it saves the transistor counts over conventional methods in hardware realization. A new Booth selector circuit using NMOS pass-transistor logic is also proposed at circuit level. It is superior to other circuits designed by CMOS in power-delay-product. And at architecture level, we adopted an ELM adder that is known to be the most efficient in power consumption, operating frequency, area and design regularity as the final adder. For registers, dynamic CMOS single-edge triggered flip-flops are used because they need less transistors per bit. To increase the operating frequency 2-stage pipeline architecture is adopted, and fast 4:2 compressors are applied in Wallace tree block. As a simulation result, the designed MAC in 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS process is operated at 200MHz, 3.3V and consumed 35㎽ of power in multiply operation, and operated at 100MHz consuming 29㎽ in MAC operations, respectively.ly.

  • PDF