• Title/Summary/Keyword: 전자현미경 관찰

Search Result 2,438, Processing Time 0.037 seconds

Tissue Engineered Cartilage Formation on Various PLGA Scaffolds (PLGA 종류와 담체의 형성 방법에 따른 인간의 조직공학적 연골형성)

  • 김유미;임종옥;정호윤;박태인;백운이
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2002
  • The purpose of this study was to evacuate the effect of different types of Poly(lactic-co-glycolic acid) (PLGA) scaffolds on the formation of human auricular and septal cartilages. All of the scaffolds were formed in a tubular shape for potential application for artificial trachea or esophagus with either 110,000 g/mol PLGA. 220,000 g/mol PLGA. or a combination of both. In order to maintain the tubular shape in vivo, two methods were used. One method was inserting polyethylene tube at the center of scaffolds made of 110,000 g/mol PLGA. The other method involved combination of the two different molecular weight PLGA's. The inner surface of tubular shaped scaffold made with 110,000 g/mol PLGA was coated with 220,000 9/mol PLGA to give more mechanical rigidity. Elastic cartilage was taken from the ear of a patient aged under 20 nears old and hyaline cartilage was taken from the nasal septum. The chondrocytes were then isolated. After second passage, the chondrocytes were seeded on the PLGA scaffolds followed by in vitro culture for one week. The cells-PLGA scaffold complex were implanted subcutaneously on the back of nude mice for 8 weeks. The tissue engineered cartilages were separated from nude mice and examined histologically after staining with the Hematoxylin Eosin. The morphology of the scaffolds were examined by scanning electron microscopy. The pores were well formed and uniformly distributed in the various PLGA scaffolds. After 8 weeks in vivo culture, cartilage was well formed with 110,000 g/mol PLGA. however lumen had collapsed. In contrast. a minimal amount of neocartilage was formed with 220,000 g/mol PLGA, while the architecture of scaffold and lumen were well preserved. Elastic cartilage formed more neocartilage than hyaline. Hyaline and elastic neocartilage were well formed on 110,000 g/mol PLGA with the polyethylene tube, exhibiting mature chondrocytes and preservation of the tubular shape. It was found that 110,000 g/mol PLGA was more appropriate for cartilage formation but higher molecular weight polymer was necessary to maintain the three dimensional shape of the scaffold.

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

A study on the shear bond strengths of veneering ceramics to the colored zirconia core (착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kang, Sun-Nyo;Cho, Wook;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.312-319
    • /
    • 2009
  • Statement of problem: Delamination of veneering porcelain from underlying ceramic substructures has been reported for zirconia-ceramic restorations. Colored zirconia cores for esthetics have been reported that their bond strength with veneered porcelain is weaker compared to white zirconia cores. Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the colored zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing the result of this with that of conventional metal ceramic system. Material and methods: A Metal ceramic (MC) system was tested as a control group. The tested systems were Katana zirconia with CZR (ZB) and Katana Zirconia with NobelRondo Press (ZP). Thirty specimens, 10 for each system and control, were fabricated. Specimen disks, 3 mm high and 12 mm diameter, were fabricated with the lost-wax technique (MC) and the CAD-CAM (ZB and ZP). MC and ZB specimens were prepared using opaque and dentin veneering ceramics, veneered, 3 mm high and 2.8 mm in diameter, over the cores. ZP specimens were prepared using heat pressing ingots, 3 mm high and 2.8mm in diameter. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50 mm/min until failure. Mean shear bond strengths (MPa) were analyzed with the One-way ANOVA. After the shear bond test, fracture surfaces were examined by SEM. Results: The mean shear bond strengths (SD) in MPa were MC control 29.14 (2.26); ZB 29.48 (2.30); and ZP 29.51 (2.32). The shear bond strengths of the tested systems were not significantly different (P > .05). All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers. Conclusion: 1. The shear bond strengths of the tested groups were not significantly different from the control group (P >.05). 2. There was no significant different between the layering technique and the heat pressing technique in the veneering methods on the colored zirconia core. 3. All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers.

EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN (완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과)

  • Wee, You-Min;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.332-343
    • /
    • 2005
  • The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at $400\;mw/cm^2$, plasma arc light curing for 6 seconds at $1300\;mW/cm^2$ and LED light curing for 10 seconds at $7The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at . For the soft-start curing method ; 2 seconds light exposure at $650\;mW/cm^2$ followed by 3 seconds at $1300\;mW/cm^2$ and exponential increase with 5 seconds followed by 10 seconds at $700\;mW/cm^2$ were used. Contraction stress was measured using strain gauge method and Vickers hardness was measured 24 hours after polymerization at the top and bottom of specimens. Resin-acrylic interfaces were observed using a scanning electron microscope(SEM). The results of present study can be summarized as follows: 1. Contraction stresses at 10 min after polymerization were significantly reduced with the soft-start curing both in plasma and LED light sources(P<0.05). 2. Plasma light curing with soft-start resulted in not only the lowest contraction stress, but also the lowest hardness(P<0.05) 3. LED light curing with soft-start showed lower contraction stress than the one-step continuous halogen and LED light curing(P<0.05). 4. Microhardness of specimens cured by LED light with soft-start was equivalent to that of cured by the one-step continuous halogen and LED light(P>0.05). 5. Curing by LED light with soft-start and conventional halogen light resulted in better marginal sealing than plasma light and one-step LED light curing.

  • PDF

EFFECT OF VARIOUS MECHANICAL TREATMENTS ON TITANIUM PLASMA SPRAYED IMPLANT SURFACES (Titanium plasma sprayed implant에 관한 여러가지 기계적 표면처리방법이 implant표면조도에 미치는 영향)

  • Yu, Hyeon-Seok;Park, Jae-Wan;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.493-506
    • /
    • 1993
  • For maintenance of an ailing or failed implant it is essential to treat the implant fixture surface so as to remove bacterial endotoxin and make a surface tolerated by surrounding soft and hard tissue. Thus in this study the method that makes the smoothest surface treated with a high speed diamond bur, a low speed diamond bur, a stone, a rubber point or Jetpolisher was studied. With the profilomenter a mean value of $R_{max}$ was measured. The hight speed diamond, the rubber point and the Jetpolisher showed a mean $R_{max}\;7.77{\mu}m$. The low speed diamond bur, the rubber, point and the Jetolisher made a mean value of $R_{max}\;8.44{\mu}m$. The stone, the rubber point and the Jetolisher showed the smoothest surfaces with a mean value of $R_{max}\;6.24{\mu}m$. TPS (titanium plasma sprayed) areas showed a mean vlaue of $R_{max}\;24.42{\mu}m$, and the smooth surfaced titanium disc manufactured by the company (IMZ, Germany) shows a mean value of $R_{max}\;3.00{\mu}m$. Under the SEM examination the disc treated with a high speed diamond bur, a rubber point and a Jetpolisher showed partially remaining TPS particles, but the height of these particles were reduced remarkably compared with those of the original TPS. The disc treated with a low speed diamond bur, a rubber point and a Jetpolisher showed a rough topography with remaining TPS on the entire surface. A stone, a rubber point and a Jetpolisher removed almost TPS and the bulk titanium metal was exposed and some scratches were made by the stone. All treated discs were revealed as rougher than the smooth surface disc manufactured by the company. An untreated TPS disc shows a very irregular surface and a $40{\mu}m$ height of the plasma sprayed areas.

  • PDF

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Distribution Pattern of Inhibitory and Excitatory Nerve Terminals in the Rat Genioglossus Motoneurons (흰쥐의 턱끝혀근 지배 운동신경원에 대한 억제성 및 흥분성 신경종말의 분포 양식)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2011
  • The genioglossus muscle plays an important role in maintaining upper airway patency during inspiration; if this muscle does not contract normally, breathing disorders occur due to closing of the upper airway. These occur because of disorders of synaptic input to the genioglossus motoneurons, however, little is known about it. In this study, the distribution of GABA-, glycine-, and glutamate-like immunoreactivity in axon terminals on dendrites of the rat genioglossus motoneurons, stained intracellularly with horseradish peroxidase (HRP), was examined by using postembedding immunogold histochemistry in serial ultrathin sections. The motoneurons were divided into four compartments: the soma, and primary (Pd), intermediate (Id), and distal dendrites (Dd). Quantitative analysis of 157, 188, 181, and 96 boutons synapsing on 3 soma, 14 Pd, 35 Id, and 28 Dd, respectively, was performed. 71.9% of the total number of studied boutons had immunoreactivity for at least one of the three amino acids. 32.8% of the total number of studied boutons were immunopositive for GABA and/or glycine and 39.1% for glutamate. Among the former, 14.2% showed glycine immunoreactivity only and 13.3% were immunoreactive to both glycine and GABA. The remainder (5.3%) showed immunoreactivity for GABA only. Most boutons immunoreactive to inhibitory amino acids contained a mixture of flattened, oval, and round synaptic vesicles. Most boutons immunoreactive to excitatory amino acids contained clear and spherical synaptic vesicles with a few dense-cored vesicles. When comparisons of the inhibitory and excitatory boutons were made between the soma and three dendritic segments, the proportion of the inhibitory to the excitatory boutons was high in the Dd (23.9% vs. 43.8%) but somewhat low in the soma (35.7% vs. 38.2%), Pd (34.6% vs. 37.8%) and Id (33.1% vs. 38.7%). The percentage of synaptic covering of the inhibitory synaptic boutons decreased in the order of soma, Pd, Id, and Dd, but this trend was not applicable to the excitatory boutons. The present study provides possible evidence that the spatial distribution patterns of inhibitory and excitatory synapses are different in the soma and dendritic tree of the rat genioglussus motoneurons.

THE EFFECT OF THERMOCYCLING ON THE DURABILITY OF DENTIN ADHESIVE SYSTEMS (열순환이 상아질 접착제의 결합 내구성에 미치는 영향)

  • Moon, Young-Hoon;Kim, Jong-Ryul;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.222-235
    • /
    • 2007
  • The objectives of this study was to evaluate the effect of thermocycling on the ${\mu}TBS$ (microtensile bond strength) to dentin with four different adhesive systems to examine the bonding durability. Freshly extracted $3^{rd}$ molar teeth were exposed occlusal dentin surfaces, and randomly distributed into 8 adhesive groups 3-steps total-etching (Scotchbond Multi-Purpose Plus; SM, All Bond-2; AB), 2-steps total-etching (Single Bond; SB, One Step plus; OS), 2-steps self-etching (Clearfil SE Bond; SE, AdheSE AD) and single-step self-etching systems (Promp L-Pop; PL, Xeno III; XE) Each adhesive system in 8 adhesives groups was applied on prepared dentin surface as an instruction and resin composite (Z250) was placed incrementally and light-cured. The bonded specimens were sectioned with low-speed diamond saw to obtain $1\times1mm$ sticks after 24 hours of storage at $37^{\circ}C$ distilled water and proceeded thermocycling at the pre-determined cycles of 0, 1,000 and 2,000. The ${\mu}TBS$ test was carried out with EZ-tester at 1mm/min. The results of bond strength test were statistically analyzed using one-way ANOVA/ Duncan's test at the a < 0.05 confidence level. Also, the fracture mode of debonded surface and the interface were examined under SEM. The results of this study were as follows ; 1. 3-step total etching adhesives showed stable, but bond strength of 2-step adhesives were decreased as thermocycling stress. 2. SE showed the highest bond strength, but single step adhesives (PL, XE) had the lowest value both before and after thermocycling. 3 Most of adhesives showed adhesive failure. The total-etching systems were prone to adhesive failure and the single-step systems were mixed failure after thermocycling. Within limited results of this study, the bond strength of adhesive system was material specific and the bonding durability was affected by the bonding step/ procedure of adhesive Simplified bonding procedures do not necessarily imply improved bonding performance.

Effect of Particle Size on Physico-Chemical Properties and Antioxidant Activity of Corn Silk Powder (옥수수수염 분말의 입자크기별 이화학적 특성과 항산화활성)

  • Cha, Sun-Mi;Son, Beom-Young;Lee, Jin-Seok;Baek, Seong-Bum;Kim, Sun-Lim;Ku, Ja-Hwan;Hwang, Jong-Jin;Song, Beom-Heon;Woo, Sun-Hee;Kwon, Young-Up;Kim, Jung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • The study was carried out to analyze the relationship between analysis of antioxidant activity and the level of functional components according to particle size of corn silk. Particle size was classified into 5 groups. By particle size distribution and color difference, the total phenol content and DPPH radical scavenging activity were observed. The particle sizes of corn silk were $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.4{\mu}m$ and $20.97{\mu}m$, respectively. The lightness of colored pigments was increased when the particle size was decreased. The contents of free sugar (fructose, glucose, galactose, sucrose, and maltose) of corn silk were analyzed using a HPLC. The total phenol contents by the particle sizes of corn silk were 2.01 mg/g, 2.02 mg/g, 2.06 mg/g, 2.26 mg/g and 2.26 mg/g, respectively. DPPH radical scavenging activities of samples were 21.00%, 21.75%, 22.90%, 24.35% and 23.67%, respectively. Antioxidative activities of Trolox and Fe(II) in corn silk were measured by ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of samples were $2.36{\mu}mol$ TE / g dw, $2.81{\mu}mol$ TE / g dw, $3.20{\mu}mol$ TE / g dw, $3.36{\mu}mol$ TE / g dw, and $3.44{\mu}mol$ TE / g dw, respectively. FRAP values of samples were $11.67{\mu}mol$ Fe(II) / g dw, $12.80{\mu}mol$ Fe(II) / g dw, $13.43{\mu}mol$ Fe(II) / g dw, $13.85{\mu}mol$ Fe(II) / g dw and $15.95{\mu}mol$ Fe(II) / g dw, respectively. Total phenolic content and antioxidantive activities based on FRAP assay and TEAC assay were increased with decreasing particle size. In addition, DPPH radical scavenging activity was also increased. A significant correlation was also noted between DPPH radical scavenging activities and the content of phenolic compounds.

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.