DOI QR코드

DOI QR Code

열순환이 상아질 접착제의 결합 내구성에 미치는 영향

THE EFFECT OF THERMOCYCLING ON THE DURABILITY OF DENTIN ADHESIVE SYSTEMS

  • 문영훈 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 김종률 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상진 (경희대학교 대학원 치의학과 치과보존학교실)
  • Moon, Young-Hoon (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Kim, Jong-Ryul (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Jin (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 발행 : 2007.05.31

초록

이 논문의 목적은 열순환이 4종 상아질 접착 시스템의 결합 내구성에 미치는 영향을 측정한 것이다. 제3대구치의 상아질층을 노출시킨 후, 무작위로 8개군으로 나눈다: 3단계 산부식 시스템 (Scotchbond Multi-Purpose Plus; SM, All Bond-2 ; AB), 2 단계 산부식 시스템 (Single Bond; SB, One Step plus, OS), 2단계 자가부식 시스템 (Clearfil SE Bond; SE, AdheSE; AD), 1 단계 자가부식 시스템 (Promp L-Pop ; PL, Xeno III; XE). 8개 군에 각 상아질 접착제를 제조사의 지시에 따라 도포하고 복합레진 (Z250)을 적층한 후, 광조사한다. $37^{\circ}C$ 증류수에서 24시간 보관한 후, 각 군마다 정해진 프로그램으로 0, 1000, 2000회 열순환한 후, 저속 diamond saw로 $1\times1mm$ 막대형 시편을 제작한다. Universal testing machine (EZ-test; Shimadzu, Japan)으로 미세인장 결합강도를 측정하였고, 유의수준 0.05 level에서 ANOVA / Duncan's test로 통계분석 하였다. 상아질측 파단면과 접착계면에 대한 주사전자현미경 관찰을 시행하였다. 이 연구의 결과는 다음과 같다; 1. 3단계 상아질 접착제의 결합강도는 열순환 전후에 통계학적으로 유의한 변화를 나타내지 않았다. 2단계 산부식형 상아질 접착제의 결합강도는 열순환 처리에 의하여 유의하게 감소되었다. 2. 2단계 자가부식형 접착제 (SE)의 결합강도가 가장 높았고, 1단계 자가부식 접착제 (PL, XE)는 실험군 중 가장 낮은 결합강도를 보였다. 3. 모든 접착제는 주로 접착성 파괴가 발생하였고, 열순환에 의하여 산부식형 접착제는 접착성 파괴가, 1단계 자가부식형 접착제에서는 혼합형 파괴가 증가하는 경향을 나타내었다. 이상의 결과로, 상아질 접착제의 접착단계/과정이 결합내구성에 영향을 미침을 알 수 있었다. 따라서 접착과정의 단순화가 반드시 접착에 효과적이라고 할 수 없다.

The objectives of this study was to evaluate the effect of thermocycling on the ${\mu}TBS$ (microtensile bond strength) to dentin with four different adhesive systems to examine the bonding durability. Freshly extracted $3^{rd}$ molar teeth were exposed occlusal dentin surfaces, and randomly distributed into 8 adhesive groups 3-steps total-etching (Scotchbond Multi-Purpose Plus; SM, All Bond-2; AB), 2-steps total-etching (Single Bond; SB, One Step plus; OS), 2-steps self-etching (Clearfil SE Bond; SE, AdheSE AD) and single-step self-etching systems (Promp L-Pop; PL, Xeno III; XE) Each adhesive system in 8 adhesives groups was applied on prepared dentin surface as an instruction and resin composite (Z250) was placed incrementally and light-cured. The bonded specimens were sectioned with low-speed diamond saw to obtain $1\times1mm$ sticks after 24 hours of storage at $37^{\circ}C$ distilled water and proceeded thermocycling at the pre-determined cycles of 0, 1,000 and 2,000. The ${\mu}TBS$ test was carried out with EZ-tester at 1mm/min. The results of bond strength test were statistically analyzed using one-way ANOVA/ Duncan's test at the a < 0.05 confidence level. Also, the fracture mode of debonded surface and the interface were examined under SEM. The results of this study were as follows ; 1. 3-step total etching adhesives showed stable, but bond strength of 2-step adhesives were decreased as thermocycling stress. 2. SE showed the highest bond strength, but single step adhesives (PL, XE) had the lowest value both before and after thermocycling. 3 Most of adhesives showed adhesive failure. The total-etching systems were prone to adhesive failure and the single-step systems were mixed failure after thermocycling. Within limited results of this study, the bond strength of adhesive system was material specific and the bonding durability was affected by the bonding step/ procedure of adhesive Simplified bonding procedures do not necessarily imply improved bonding performance.

키워드

참고문헌

  1. Raskin A, Mechotte-Theall B. Vreven J, Wilson NH. Clinical evaluation of a posterior composite 10-year report. J Dent 27:130-19. 1999
  2. Wilder AD, May KN. Bayne SC. Taylor DF. Leinfelder KF. Seventeen year clinical study of ultraviolet-cured posterior composite class I and II restorations. J Esthetic Dent 11: 135-142. 1999 https://doi.org/10.1111/j.1708-8240.1999.tb00390.x
  3. Sano H. Takatsu T. Ciucchi B. Horner JA. Matthews WG, Pashley DH, Nanoleakage: leakage within the hybrid layer. Oper Dent 20:18-25. 1995
  4. Yoshida Y. Van Meerbeeek B. Nakayama Y. Snauwaert J, Hellemans L. Lambrechts P. Vanherle G. Wakasa K. Evidence of chemical bonding at biomaterial? hard tissue interfaces, J Dent Res 79: 709-714. 2000 https://doi.org/10.1177/00220345000790020301
  5. Primenta LAF. Amaral CM, Bredrane de Castro AKB. Ritter AV. Total-etch. deproteinization and self-etching. Oper Dent 29:592-598, 2004
  6. Paul SJ. Welter DA. Ghazi M, Pashley D, Nanoleakage at the dentin adhesive-interface vs. microtensile bond strength. Oper Dent 24: 181-188. 1999
  7. Giannini M, Seixas CAM. Reis AF. Pimenta LAF. Sixmonth storage-time evaluation of one-bottle adhesive systems to dentin. J Esth Rest Dent 15:43-49. 2003 https://doi.org/10.1111/j.1708-8240.2003.tb00281.x
  8. Tay FR. Pashley DH. Yoshiyama M. Two mondes of nanoleakage expression in single-step adhesives. J Dent Res 81 :472-476. 2002 https://doi.org/10.1177/154405910208100708
  9. Carracho AJL. Chappell RP. Glaros AG. Purk JH. Erick JD. The effect of storage and thermo cycling of the shear bond strength of three dental adhesive. Quintessence Int 22:745-752. 1991
  10. Marshall GW, Marshall SJ, Kinney JH, Balooch M. The dentine substrate: structure-and properties related to bonding. J Dent 25: 441-458. 1997 https://doi.org/10.1016/S0300-5712(96)00065-6
  11. Ferracane JL. Berge JR. Condon JR. Jn vitro aging of dental composites in-water-effect of conversion, filler volume. and fillerl matrix coupling. J Biomed-Mater Res 42:465-472. 1998 https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
  12. Gale MS. Darvel BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89-99, 1999 https://doi.org/10.1016/S0300-5712(98)00037-2
  13. Sano H. Yoshikawa T. Pereira PNR. Kanemura N. Morigami M. Tagami J. Pashley. Long-term Durability of dentine bonds made with a self-etching primer, in vivo. J Dent Res 78:906-911, 1999 https://doi.org/10.1177/00220345990780041101
  14. Tanumiharja M. Burrow MF. Tyas MJ. Microtensile bond strengths of seven-dentine adhesive systems. Dent Mater 16:180-187. 2000 https://doi.org/10.1016/S0109-5641(00)00007-5
  15. Burrow MF. Satoh M & Tagami J. Dentin bond durability after three years using a dentin bonding agent with and with-out priming. Dent Mater 12(5): 302-307. 1996 https://doi.org/10.1016/S0109-5641(96)80038-8
  16. Li HP. Burrow MF. Tyas MJ. The effect of long-term storage on nano-Ieakage. Oper Dent 26: 609-616. 2001
  17. Tay FR. Pashley DH. Suh BI. Carvalho RM. Itthagarun A. Single-step adhesives are permeable membranes. J Dent 30:371-382. 2002 https://doi.org/10.1016/S0300-5712(02)00064-7
  18. Kanca 3rd J. Gwinnett AJ. Successful marginal adaptation of a dentin-enamel bonding system in vitro and vivo. J Esthet Dent 6: 286-94. 1994 https://doi.org/10.1111/j.1708-8240.1994.tb00871.x
  19. Nakajima M, Kanemura N. Pereira PN. Tagami J. Pashley DH. Comparative microtensile bond strength and SEM analysis of bonding to wet and dentin. Am J Dent 13:324-8, 2000
  20. Reis A, Loguercio AD. Carvalho RM, Grande RH. Durability of resin dentin interfaces: effects of surface moisture and adhesive solvent component. Dent Mater 20(7) :669-76, 2004 https://doi.org/10.1016/j.dental.2003.11.006
  21. Reis A, Loguercio AD. Azevedo CLN. Carvalho RM. Siger JM, Grande RHM. Moisture spectrum of demineralized dentin for different solvent -based adhesive system, J Adhes Dent 5:183-192. 2003
  22. Takahashi A. Inoue S. Kawamoto C. Ominato R. Tanaka T. Sato Y. Pereira PNR. Sano H, In vivo longterm durability of the bond to dentin using two adhesive systems. J Adhes Dent 4:151-159. 2002
  23. Miyazaki M. Sato M. Onose H. Moore BK. Influence of thermal cycling on dentin bond strength of two-step bonding systems. Am J Dent 11: 118-122, 1998
  24. Nikaido T. Kunzelman KH. Chen H. Ogata M, Harada N. Yamaguchi S. Cox CF. Hickel R. Tagami J. Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater 18:269-275. 2002 https://doi.org/10.1016/S0109-5641(01)00048-3
  25. Shirai K. De Munck J. Yoshida Y. Inoue S, Lambrechts P. Suzuki K. Shintani H. van Meerbeek B. Effect of cavity configuration and ageing on the bonding effectiveness of six adhesives to dentin. Dent Mater 21:110-124. 2005 https://doi.org/10.1016/j.dental.2004.01.003
  26. 조영곤, 반일환, 유미경. 상아질 접착 후 저장기간에 따른 접착제의 접착력의 변화. 대한치과보존학회지 30(3):204-205. 2006
  27. Kato G. Nakabayashi N. The durability of adhesion to phosphoric acid etched, wet dentine substrates. Dent Mater 14:347-352. 1998 https://doi.org/10.1016/S0109-5641(99)00003-2
  28. International Organization for Standardization. ISO TR 11405. Dental materials-guidance on testing of adhesion to tooth structure. 1994
  29. Hashimoto M, Ohno H. Kaga M. Endo K. Sano H. Oguchi H. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res 79:1385-1391. 2000 https://doi.org/10.1177/00220345000790060601
  30. Fumiaki K. Takafumi O, Tetsuo I. Naoyuki M. Influence of thermal cycles in water on flexural strength of laboratory-processed composite resin. J Oral Rehabil 703-707. 2001
  31. Hakimeh S. Vaidyanathan J. Houpt ML. Vaidyanathan TK. Hagen SV. Microleakage of compomer class V restorations: effect of load cycling. thermal cycling. and cavity shape differences. J Prosthet Dent 83: 194-203. 2000 https://doi.org/10.1016/S0022-3913(00)80012-8
  32. Wendt SL. Mcinnes PM, Dickinson GL. The effect of therm- cycling in microleakage analysis. Dent Mater 8:181-184, 1992 https://doi.org/10.1016/0109-5641(92)90079-R
  33. Krejci I. Lutz F. Mixed class V restorations: the potentials of dentine bonding agent. J Dent 18:263-270, 1990 https://doi.org/10.1016/0300-5712(90)90026-B
  34. Nakajima M. Ogata M, Okuda M, Tagami J. Sano H. Pashley DH. Bonding to caries-affected dentin using self-etching primers. Am J Dent 12:309-314, 1999
  35. Tay FR. Pashley DH. Dental adhesives of the future. J Adhes Dent 4:91-103. 2002
  36. De Munck J. Van Landuyt K, Peumans M. Poitevin A, Lambrechts P, Braem M, Van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84(2): 118-32. 2005 https://doi.org/10.1177/154405910508400204
  37. Frankenberger R. Strobel WO, Lohbauer U. Kramer N. Petschelt A. The effect of six years of water storage on resin composite bonding to human dentin. J Biomed Mater Res Part B: Appl Biomater 69(1) :25-32. 2004
  38. 장영인, 최경규, 박상진. 복합레진에 대한 자가부식형 접착제의 적합성에 관한 연구. 대한치과보존학회지 31(in process). 2006
  39. Armstrong SR. Vargas MA. Fang Q, Laffoon JE. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1step dentin bonding system through 15-month water storage. J Adhes Dent 5:47-56, 2003
  40. Tay FR. Gwinnett JA, Wei SH. Relation between water content in acetone/alcohol-based primer and interfacial ultrastructure. J Dent 26: 147-156, 1998 https://doi.org/10.1016/S0300-5712(96)00090-5
  41. Choi KK. Condon JR, Ferracane JL. The effects of adhesive thickness on polymerization contraction stress of composite. J Dent Res 79:812-817, 2000 https://doi.org/10.1177/00220345000790030501
  42. Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H. Inoue S, Tagawa Y, Suzuki K. De Munck J, Van Meerbeek B. Comparative study on adhesive performance of functional monomers. J Dent Res 83(6) :454-8, 2004 https://doi.org/10.1177/154405910408300604
  43. Burrow MF, Harada N, Kitasako Y, Nikaido T, Tagami J. Seven-year dentin bond strengths of a total-and self-etch system. Eur J Oral Sci 113(3): 265-70, 2005 https://doi.org/10.1111/j.1600-0722.2005.00213.x
  44. Brackett MG, Dib A. Brackett WW, Estrada BE, Reyes AA. One-year clinical performance of a resin- modified glass ionomer and a resin composite restorative material in unprepared Class V restorations. Oper Dent 27(2):112-6, 2002
  45. Turkun SL. Clinical evaluation of a self-etching and a one-bottle adhesive system at two years. J Dent 31:527-534, 2003 https://doi.org/10.1016/S0300-5712(03)00107-6
  46. Hashimoto M, Ohno H. Sano H, Kaga M, Oguchi H. Degradation patterns of different adhesives and bonding procedures. J Biomed Mater Res Part B: Appl Biomater 66(1): 324-30, 2003
  47. Tay FR, King NM, Suh BI. Pashley DH. Effect of delayed activation of light-cured resin composites on bonding of all-in-one adhesives. J Adhes Dent 3(3): 207-25, 2001
  48. El Zohairy AA. De Gee AJ. Hassan FM. Feilzer AJ. The effect of adhesives with various degrees of hydrophilicity on resin ceramic bond durability. Dent Mater 20:778-787, 2004 https://doi.org/10.1016/j.dental.2003.05.010
  49. Carrilho MR, Carvalho RM, Tay FR, Pashley DH. Effects of storage media on mechanical properties of adhesive systems. Am J Dent 17(2): 104-8. 2004
  50. Yiu CK. King NM, Pashley DH. Suh BI. Carvalho RM. CarrilhoMR. Tay FR. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 25:5789-96. 2004 https://doi.org/10.1016/j.biomaterials.2004.01.026
  51. Yiu CK. King NM, Carrilho MR, Sauro S, Rueggeberg FA, Prati C, Carvalho RM, Pashley DH, Tay FR. Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resins. Biomaterials 27(9): 1695-703, 2006 https://doi.org/10.1016/j.biomaterials.2005.09.037

피인용 문헌

  1. Quantitative comparison of permeability in the adhesive interface of four adhesive systems vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.051
  2. Effect of Er:YAG lasing on the dentin bonding strength of two-step adhesives vol.36, pp.5, 2011, https://doi.org/10.5395/JKACD.2011.36.5.409