• Title/Summary/Keyword: 전산유체역학모델

Search Result 415, Processing Time 0.029 seconds

A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance (고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.96-102
    • /
    • 2022
  • Reactants of PEMFC are hydrogen and oxygen in gas phases and fuel cell overpotential could be reduced when reactants are smoothly transported. Numerous studies to modify cathode flow field design have been conducted because oxygen mass transfer in high current density region is dominant voltage loss factor. Among those cathode flow field designs, a block in flow field is used to forced supply reactant gas to porous gas diffusion layer. In this study, the block was installed on a simple fuel cell model. Using computational fluid dynamics (CFD), effects of forced convection due to blocks on a polarization curve and local current density contour were studied when different air flow rates were supplied. The high current density could be achieved even with low air supply rate due to forced convection to a gas diffusion layer and also with multiple blocks in series compared to a single block due to an increase of forced convection effect.

Study on Flow Analysis of Hot Gas Valve with Pintle (핀틀이 적용된 고온 가스 밸브 유동장 해석 기법에 관한 연구)

  • Lee, Kyungwook;Heo, Seonuk;Kwon, Sejin;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2015
  • Numerical simulations of the hot gas valve with a pintle have been conducted in order to investigate the effect of numerical methods and computational domains. The grid sensitivity is checked by varying the grid number from 100,000 to 1,700,000. The existence of ambient region doesn't make the significant differences of the flow-field and the temperature distribution. Three turbulence models are adopted to figure out its influence on the thrust and temperature distribution: Spallart-Allmaras, RNG $k-{\varepsilon}$, $k-{\omega}$ SST. The thrusts of the hot gas valve are almost same in all cases of the simulation, however, there are about 5% difference in the temperature distribution. With the ambient region, the difference are observed in the temperature distribution with respect to the number of grids.

Effect of Artificial Changes in Geographical Features on Local Wind (인공적 지형변화가 국지풍에 미치는 영향)

  • Kim, Do-Yong;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.185-194
    • /
    • 2016
  • The effect of artificial changes in geographical features on local wind was analyzed at the construction site of bridge and fill-up bank in the southern part of Haui-do. Geographic Information System (GIS) data and Computational Fluid Dynamics (CFD) model were used in this study. Three-dimensional numerical topography based on the GIS data for the target area was constructed for the surface boundary input data of the CFD model. The wind observations at an Automatic Weather Station (AWS) located in Haui-do were used to set-up the model inflows. The seasonal simulations were conducted. The differences in surface wind speed between after and before artificial changes in geographical features were analyzed. The surface wind speed decreases 5 to 20% at the south-western part and below 2% of the spatial average for salt field. There was also marked the effect of artificial changes in geographical features on local wind in the westerly wind case for the target area.

Development of Multiphase Pump for Offshore Plant (해양플랜트용 다상유동 펌프 개발)

  • Kim, Joonhyung;Choi, Youngseok;Yoon, Joonyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.183-190
    • /
    • 2014
  • A multiphase pump was developed in this study. The optimum multiphase pump design was arrived at, and the interactions among the different geometric configurations were explained by applying numerical analysis and the DOE (design of experiments) method. First, we designed the base model to meet the specifications. Then, we defined the design parameters related to the meridional plane and the blade angle. Each design parameter was used for generating experiment sets, and numerical analyses were performed on these sets. Finally, the optimized design was selected based on the results of the DOE analysis. The numerical optimization resulted in the optimum model having higher efficiency than the base model. In addition, performance degradation due to changes in the GVF (gas volume fraction) is discussed.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Numerical Study on the Effect of Injection Nozzle Shape on the Cooling Performance in Supersonic Film Cooling (초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Sang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.641-648
    • /
    • 2016
  • In this study, the effect of injection nozzle shape on the supersonic film cooling performance is analyzed using CFD. The design parameters are inside and outside angles of upper plate of nozzle and nozzle tip thickness. It is observed that the mass flow rate of film cooling decreases with increase of inside angle, while the effect of the change of mass flow rate on the film cooling effectiveness is relatively small. In addition, cooling performance is generally reduced, except ahead of the local region where shock wave interaction with film cooling occurs, in accordance with the growth of the outside angle and tip thickness. In this paper, the CFD simulation is performed using a commercial software, ANSYS Fluent V15.0, and the CFD model is validated by comparing it with the experimental data shown in preceding research.

A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss (흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ki, Ja-Young;Cha, Bong-Jun;Yu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.263-267
    • /
    • 2008
  • In this work the realistic install performance analysis of a helicopter was performed together with power extraction enabling to operate auxiliary system as well as intake pressure loss, loss due to bleed air, etc. which must be considered in practical propulsion system's performance modelling to be installed to the airframe. The pressure loss occurring in intake was estimated from the intake performance map with relationships of Mach Number and pressure loss. In order to evaluate the proposed installed performance model, the experimental data for comparison must be needed when mounted in propulsion system. However because of lack of accessibility to such real data at the moment, the alternative way was made through comparison that the analysis results by the proposed model were compared with a wellknown commercial program GASTURB's analysis results. The validity of the proposed installed performance model was consequently confirmed because its average deferences from the GASTURB's results were within 0.5%.

  • PDF

A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model (1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구)

  • Park, Jaehyun;Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

Application of Numerical Model for the Effective Design of Large Scale Fire Calorimeter (화재발열량계의 효율적 설계를 위한 수치해석 모델의 적용)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • The present study develops a numerical model based on the computational fluid dynamics technique to analyse the thermal flow characteristics of large scale fire calorimeter and examine the characteristics of primary parameters affecting on the uncertainty of heat release rate measurement. ANSYS CFX version 12.1 which is a commercial CFD package is used to solve the governing equations of the thermal flow field and the eddy dissipation combustion model and P-1 radiation model are applied to simulate the fire driven flow. The numerical results shows that the horizontal duct system with $90^{\circ}$ bend duct was shown relatively high deviated asymmetric flow profiles at the sampling location and the deviation of the velocity field was higher than that of the temperature and species quantities. The present study shows that the computational model can be applicable to optimize the design process and operating condition of the large scale fire calorimeter based on the understanding of the detail flow field.