• Title/Summary/Keyword: 전면벽체

Search Result 74, Processing Time 0.169 seconds

An Experimental Study on the Characteristics of Earth Pressure to a Debris-fall Prevention Wall (낙석방지벽에 작용하는 토압의 특성에 대한 실험적 연구)

  • Yoon, Nam-Sik;Park, Yong-Won;Park, Myoung-Soo;Choi, Yi-Jin
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This paper deals with the characteristics of earth pressure to the debris-fall prevention walls which usually are installed in front of steep slope. Such walls have narrow backfill width where the active soil wedge can not be developed fully. The earth pressure to such walls ue affected by the movement of wall and arching effects due to the friction developing on the surface of adjacent ground slope and wall and therefore cannot be analyzed and calculated reliably. The study is carried out through laboratory model tests using centrifuge test. Test results reveal that the earth pressure to the debris-fall prevention wall depends largely on the inclination angle of the ground slope and the wall movement. The earth pressure reduction due to wall movement was observed at the upper half of wall, while the arching effect was significant at the lower half especially in the case of steep ground slope. It can be said that from the result of this study in the design of a debris-fall prevention wall the earth pressure should be determined considering the inclination of ground slope and the condition of wall movement during and after construction.

  • PDF

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

Case Study on Global Slope Failure Case of Segmental Retaining Wall (블록식보강토옹벽의 전면 사면붕괴 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, geosynthetic reinforced earth walls are gradually replacing conventional concrete retaining walls for reasons of economy, expediency of construction, and aesthetics. A number of reinforced soil walls having more than 10m heights have been constructed to make more effective development in the country. However, mistakes in design and construction of reinforced earth walls have resulted in many troubles such as failure of reinforced earth walls, horizontal deformationor breakdown of facings, and so forth during or after construction. In this paper, a case study on global sliding failure of a geogrid-reinforced tiered wall is carried out to investigate the causes of the failure and suggest the proper countermeasures. From the subsurface investigation and field instrumentation, It is found that the cause of the global sliding failure was occurred by decreasing of bearing capacity of foundation ground induced by infiltration of rainwater.

  • PDF

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

Model Tests on the Reinforcement Effect of Unattached Strips to the Cantilever Retaining Wall (비정착 띠보강재의 역T형 옹벽 보강효과에 관한 모형실험)

  • Han, Gyeong-Je;Kim, Un-Yeong;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.31-40
    • /
    • 1998
  • To verify the reinforcing effect of the strips which are inserted in the backfill, but not connected to the face wall, model tests are executed. As the reinforcing effect is expected to reduce the active thrust acting on the retaining wall, test programmes included the measurements of the thrust. As a result. it is ascertained that the active thrusts are reduced by as much as 50%. Besides, efficient arrangement and the optimum length of the strips are verified. And the the number of reinforcing strips are increased, are close to the Rankine's hypothesis.

  • PDF

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.

An Experimental Study on Characteristics of Earth Pressure Distribution for Segmental Reinforced Earth Wall (블록형 보강토 옹벽의 토압 특성 연구)

  • 김진만;조삼덕;이정재;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Retaining walls with reinforced earth have been constructed around the world. The use of reinforced earth is a recent development in the design and construction of earth-retaining structure. It is believed that reinforced retaining wall has some advantages which make construction quite simple basically. It wilt take short construction time relatively, comparing, fur example with reinforced-concrete retaining wall. In addition, low price and easy construction will be good attractive points in practical point of view. In this study, five field-tests monitoring data for lateral pressures on geogrid-reinforced retaining wall have been compiled and evaluated. Based on field-tests it is found that horizontal displacements of the facing was measured to be about 0.19∼0.76% and that the maximum tensile strains of reinforcement was evaluated to be about 0.66∼1.98%. The maximum tensile strains, measured from each site, do not reach 5% of the practical allowable strain of the geogrid. And also it is found that the lateral pressure distributions of reinforced-earth retaining wall are close to a trapezoid shape like a flexible retaining wall system, instead of a theoretical triangular shape.

An Experimental Study on Recharge Well Technology for Prevention of Ground Collapse (지반함몰 방지를 위한 지하수 재주입 실험적 연구)

  • Shin, Eunchul;Park, Chunsung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.35-43
    • /
    • 2017
  • It is a method of suppressing back ground subsidence by re-injecting groundwater back to the target ground and recovering the underground water level. In order to analyze the subsidence of the back ground due to maintaining the underground water level, indoor model experiments were conducted. Through this study, the factors influencing on the groundwater and the tendency of subsidence back ground by experiments were analyzed and the effect of ground subsidence by reinfusion of groundwater was also investigated. As a result of the subsidence analysis with considering only the influence of the underground water level, the settlement of the ground occurs as the underground water level at the time of ground excavation goes down. The closer to the back of the retaining wall, the maximum settlement occurred. Moreover, it was analyzed that the influence distance where subsidence occurs from retaining wall to the point of about 1.8 H on the basis of the ground collapse. The most effective location of water reinjection is the closet location to the back of braced-cut wall for reducing the groundwater down and also minimizing the ground settlement.

Influence of Facing Stiffness on Global Stability. of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kwon, Young-Ho;Kang, In-Kyu;Park, Sa-Won;Kang, Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.427-434
    • /
    • 2002
  • In Korea, there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the downtown area, it is important that the relaxation of the ground is minimized in the ground excavation works. Due to these problems, soil nailing systems are often used the flexible facing such as shotcrete rather than the rigid facing such as SCW, CIP, and jet grout types in Korea. The soil nailing systems with rigid facings are used greatly however it is insufficient researches for design and analysis of soil nailing systems with rigid facings. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system, failure loads, displacement behaviour, axial force acting on the nails, and distribution of earth pressure. Also, the parametric studies are carried out for the typical section of soil nailed walls according to thickness of concrete facings and internal friction angle of soil using the numerical technique as shear strength reduction technique.

  • PDF

Site Monitoring of the Retaining Wall Reinforced by Geogrids with Block Type Facings (지오그리드 보강토 옹벽의 계측평가)

  • Kim, Jin-Man;Lee, Dae-Young;Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.106-114
    • /
    • 2006
  • Uses of geosynthetics as a reinforcing material for earth structures have ever increased due to their excellent economy. fine external appearance. and easy construction. In the current practice of geosynthetics. however, the lacks of the standardized method of evaluating the soil/geosynthetics friction properties and the inconsistency of conventional design methods develop confusion to the civil engineers. The purpose of site monitoring of the retaining wall reinforced by geogrids was to evaluate the applicability of existing design methods to, and performance of. CHAMSTONE wall system. Full scale field performance during and after construction was monitored by incorporating instrumentation including strain gauges on the geogrid and soil pressure cells. The difference of the reinforcing effects of geosynthetics embedded in the soil will be also investigated by comparing of the line and curve types of retaining wall reinforced by geogrids with block type facings.