• Title/Summary/Keyword: 전력 증폭기

Search Result 992, Processing Time 0.031 seconds

New Drain Bias Scheme for Linearity Enhancement of Envelope Tracking Power Amplifiers (Envelope Tracking 전력 증폭기의 선형성 개선을 위한 새로운 드레인 바이어스 기법)

  • Jeong, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • This paper presents new drain bias scheme for the linearity enhancement of envelope tacking power amplifiers for W-CDMA base-stations. In the conventional envelope tracking power amplifiers, the drain bias voltage is lowered close to the knee voltage of transistor, resulting in the severe linearity degradation. To solve this problem, it is proposed in this paper that the amplifier is biased in the conventional class AB mode with a fixed drain bias voltage if the input envelope is low and in the envelope tracking mode otherwise. Moreover, the drain bias in the envelope tracking mode is newly determined to minimized the distortion. To verify the effectiveness of the proposed bias scheme, simulation is performed on the W-CDMA based-station envelope tracking power amplifier using class AB Si-LDMOS power amplifier. It is shown from the simulation that the proposed bias scheme allows a drastic linearity enhancement with the comparable efficiency enough to meet the requirement of W-CDMA base-station without additional linearization techniques.

Design of High Efficiency Switching-Mode Doherty Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 고효율 스위칭 모드 도허티 전력증폭기 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we describe the design and implementation of a high efficiency Doherty power amplifier using gallium nitride (GaN) high-electron mobility transistor (HEMT). The carrier and peaking amplifiers of the proposed Doherty power amplifier consist of the switching-mode Class-E power amplifiers. The test conditions are a duty of 10% and a pulse width of $100\;{\mu}s$ and pulse repetition frequency (PRF) of 1 kHz for a S-band radar application. A RF performance peak PAE of 64% with drain efficiency of 80.6%, at 6 dB output back-off point from saturated output power of 45.5 dBm, was obtained at 2.85 GHz.

Gate-Bias Control Technique for Envelope Tracking Doherty Power Amplifier (Envelope Tracking 도허티 전력 증폭기의 Gate-Bias Control Technique)

  • Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Il-Du;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.807-813
    • /
    • 2008
  • The gate-biases of the Doherty power amplifier are controlled to improve the linearity performance. The linearity improvement mechanism of the Doherty amplifier is the harmonic cancellation of the carrier and peaking amplifier at the output power combining point. However, it is difficult to cancel the harmonic power for the broader power range because the condition for cancelling is varied by power. For the linearity improvement, we have explored the linearity characteristic of the Doherty amplifier according to the input power and gate biases of the carrier and peaking amplifier. To extend the region of harmonic power cancellation, we have injected the proper gate bias to the carrier and peaking amplifier according to the input power levels. To validate the linearity improvement, the Doherty amplifier is designed using Eudyna 10-W PEP GaN HEMT EGN010MKs at 2.345 GHz and optimized to achieve a high linearity and efficiency at an average output power of 33 dBm, backed off about 10 dB from the $P_{1dB}$. In the experiments, the envelope tracking Doherty amplifier delivers a significantly improved adjacent channel leakage ratio performance of -37.4 dBc, which is an enhancement of about 2.8 dB, maintaining the high PAE of about 26 % for the WCDMA 1-FA signal at an average output power of 33 dBm. For the 802.16-2004 signal, the amplifier is also improved by about 2 dB, -35 dB.

A RX Cancellation Loop Configyration for TX Power Amplifier Module (수신대역 Cancellation Loop를 갖는 송신단 전력 증폭기 설계)

  • Jeong, yong-Chae;Park, Jun-Seok;Ahn, Dal;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1156-1160
    • /
    • 2000
  • The cancellation loop configuration for power amplifier module is proposed to reject the RX signals using feed-forward technique. In this paper, we implement the 1W-ampilfier module of WLL band to show validity of the proposed cancellation loop. The power amplifier module with the proposed cancellation loop can provide low TX insertion path loss due to duplexer and choice of loose RX attenuation characteristic for various wireless communication systems. It shows at least 90 % improved RX rejection characteristic compared to power amplifier module without RX band cancellation loop.

  • PDF

Design and Realization UHF Power Amplifier for Air Traffic Control (항공교통관제용 UHF대역 전력 증폭기 설계 및 구현)

  • Kang, Suk-Youb;Song, Byoung-Jin;Park, Wook-Ki;Go, Min-Ho;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the 25W power amplifier for UHF band radio transceiver has been designed and realized. The power amplifier was composed of drive, power amplifier and control stages. Feedback topology and coaxial line baluns were used for wide band operation. The VDMOS, which has reliable performance for linearity and efficiency, was used for power device and designed to operate as push-pull amplification at Class AB Bias. The power amplifier designed in such a way was found to show stable AM modulation performance when voice signal was detected at the gate stage, with being designed and realized to meet output specifications of commercial air traffic control transmitter.

  • PDF

High Efficiency Power Amplifier using Analog Predistorter (아날로그 전치왜곡기를 이용한 고효율 전력증폭기)

  • Choi, Jang-Hun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents the Doherty power amplifier with a digitally controlled analog predistorter circuit of Scintera Corp. to produce high power efficiency and high linearity performance. The analog predistorter improves the linearity performance because of controlling amplitude and phase values of input signal in order to improve intermodulation performance of power amplifier. Also, the power amplifier is designed by the Doherty technology to obtain the high efficiency performance. To validate the Scintera's analog predistorter, we are implemented the power amplifier with Doherty method at center frequency 2150 MHz. Compared with the balanced amplifier, the power amplifier is improved above 11% enhanced efficiency and more than 15 dB ACPR improvement.

Design and Implementation of HPA for TVWS (TVWS용 전력증폭기 설계 및 구현)

  • Song, Ji-Hun;Kim, Jung-Hwan;Seol, Gwang-cheol;Yu, Ho Sang;Kang, Sanggee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.693-695
    • /
    • 2015
  • The design and implementation of a broadband and linear HPA for TVWS are presented in this paper. The spectrum mask and transmitted power of HPAs for TVWS must be controlled and meet the regulations to minimize interference effects on the present broadcasting systems. The implemented HPA has the operating frequency of 470 ~ 698MHz with the maximum 48.63dB and minimum 43.45dB gain, input reflection coefficient of below -21.32dB, output reflection coefficient of below -4.29dB and the linearity of -45.24dBc at 28.79dBm output power.

  • PDF

A Broadband and High Linearity HPA for TVWS (TVWS용 광대역 고선형 전력증폭기)

  • Kang, Sanggee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.613-615
    • /
    • 2014
  • The design and implementation of a broadband and linear HPA(High Power Amplifier) for TVWS are presented in this paper. The spectrum mask and transmitted power of HPA for TVWS must be controlled and meet the regulations to minimize interference effects on present broadcasting systems. The implemented HPA has the operating frequency of 460 ~ 698MHz with $24.7{\pm}1dB$ gain, input reflection coefficient of below -25dB, output reflection coefficient of below -7.28dB and the linearity of -57.7dBc at 22.2dBm output power.

A Study on the Development of 38 GHz Hybrid Power Amplifier Module (38 GHz 하이브리드 전력증폭기 모듈 개발에 관한 연구)

  • 윤양훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1701-1706
    • /
    • 2000
  • In this work a 38 GHz hybrid 2-stage power amplifier module using GaAs pHEMTs and waveguide to microstrip transitions has been successfully developed. A 10 mil thickness duroid substrate was use for fabrication of the power amplifier and the waveguide to microstrip transitions. The fabricated waveguide to microstrip transition showed about 1 dB insertion loss(back to back) at 32-40 GHz. The measured results of power amplifier module showed 29 dBm output power(P1.5dB), 7,2 dB associated gain and 11.2% power-added efficiency(PAE) at 36.8-38.5 GHz.

  • PDF

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.