• Title/Summary/Keyword: 전력 소모

Search Result 2,285, Processing Time 0.028 seconds

Reconfigurable CMOS low-noise amplifier for multi-mode/multi-band wireless receiver (다중모드/다중대역 무선통신 수신기를 위한 재구성 가능 CMOS 저잡음 증폭기)

  • Hwang, Bo-Hyun;Jung, Jae-Hoon;Kim, Shin-Nyoung;Jeong, Chan-Young;Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.111-117
    • /
    • 2006
  • Reconfigurable CMOS low-noise amplifier (LAN) has been developed for multi-mode/multi-band wireless receiver. By employing common-gate input stage, the performance can be optimized for multiple operation bands by simply controlling the output load impedance. Although the conventional common-gate LAN has larger than 3dB noise figure (NF), the newly developed negative feedback scheme enables the common-gate input LNA to have less than 2dB NF. To have optimum linearity performance of wireless receiver, the gain of the LNA can be controlled. The LNA implemented in a 0.13mm CMOS technology shows $19{\sim}20dB$ voltage gain, $1.7{\sim}2.0dB$ NF, -2dBm iIP3 at $1.8{\sim}2.5GHz$ frequency range. The LNA dissipates 7mW from a 1.2V supply voltage.

10Gb/s CMOS Transimpedance Amplifier Designs for Optical Communications (광통신용 10Gb/s CMOS 전치증폭기 설계)

  • Sim, Su-Jeong;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, a couple of 10Gb/s transimpedance amplifiers are realized in a 0.18um standard CMOS technology for optical communication applications. First, the voltage-mode inverter TIA(I-TIA) exploits inverter input configuration to achieve larger effective gm, thus reducing the input impedance and increasing the bandwidth. I-TIA demonstrates $56dB{\Omega}$ transimpedance gain, 14GHz bandwidth for 0.25pF photodiode capacitance, and -16.5dBm optical sensitivity for 0.5A/W responsivity, 9dB extinction ration and $10^{-12}$ BER. However, both its inherent parasitic capacitance and the package parasitics deteriorate the bandwidth significantly, thus mandating very judicious circuit design. Meanwhile, the current-mode RGC TIA incorporates the regulated cascade input configuration, and thus isolates the large input parasitic capacitance from the bandwidth determination more effectively than the voltage-mode TIA. Also, the parasitic components give much less impact on its bandwidth. RGC TIA provides $60dB{\Omega}$ transimpedance gain, 10GHz bandwidth for 0.25pF photodiode capacitance, and -15.7dBm optical sensitivity for 0.5A/W responsivity, 9dB extinction ration and $10^{-12}$ BER. Main drawback is the power dissipation which is 4.5 times larger than the I-TIA.

A Digital Input Class-D Audio Amplifier (디지털 입력 시그마-델타 변조 기반의 D급 오디오 증폭기)

  • Jo, Jun-Gi;Noh, Jin-Ho;Jeong, Tae-Seong;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.6-12
    • /
    • 2010
  • A sigma-delta modulator based class-D audio amplifier is presented. Parallel digital input is serialized to two-bit output by a fourth-order digital sigma-delta noise shaper. The output of the digital sigma-delta noise shaper is applied to a fourth-order analog sigma-delta modulator whose three-level output drives power switches. The pulse density modulated (PDM) output of the power switches is low-pass filtered by an LC-filter. The PDM output of the power switches is fed back to the input of the analog sigma-delta modulator. The first integrator of the analog sigma-delta modulator is a hybrid of continuous-time (CT) and switched-capacitor (SC) integrator. While the sampled input is applied to SC path, the continuous-time feedback signal is applied to CT path to suppress the noise of the PDM output. The class-D audio amplifier is fabricated in a standard $0.13-{\mu}m$ CMOS process and operates for the signal bandwidth from 100-Hz to 20-kHz. With 4-${\Omega}$ load, the maximum output power is 18.3-mW. The total harmonic distortion plus noise and dynamic range are 0.035-% and 80-dB, respectively. The modulator consumes 457-uW from 1.2-V power supply.

A 12Bit 80MHz CMOS D/A Converter with active load inverter switch driver (능동부하 스위치 구동 회로를 이용한 12비트 80MHz CMOS D/A 변환기 설계)

  • Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes a 12 bit 80MHz CMOS D/A converter for wireless transceiver. Proposed circuit in the paper employes segmented structure which consists of four stage 3bit thermometer decoders. Proposed D/A converter is manufactured 0.35um CMOS n-well digital standard process and measurement results show a ${\pm}1.36SB/{\pm}0.62LSB$ of INL/DNL and $46pV{\cdot}s$ of glitch energy. SNR and SFDR are measured to be 58.5dB and 64.97dB @ Fs=80MHz and Fin=19MHz with a total power consumption of 99mW. Such results proved that our work has low power consumption, high linearity, low glitch and improved dynamic performance. Therefore, our work can be appled to various high speed and high performance circuits.

10MHz/77dB dynamic range CMOS linear-in-dB variable gain amplifiers (10MHz/77dB 다이내믹 영역을 가진 선형 가변 이득 증폭기)

  • Cha, Jin-Youp;Yeo, Hwan-Seok;Kim, Do-Hyung;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.16-21
    • /
    • 2007
  • CMOS variable gain amplifier (VGA) IC designs for the structure monitoring systems of the telemetries were developed. A three stage cascaded VGA using a differential amplifier and a linear-in-dB controller is presented. A proposed VGA is a modified version of a conventional VGA such that the gain is controlled in a linear-in-dB fashion through the current ratio. The proposed VGA circuit introduced in this paper has a dynamic range of 77 dB with 1.5 dB gain steps. It also achieved a gain error of less than 1.5 dB over 77 dB gain range. The VGA can operate up to 10MHz dissipating 13.8 mW from a single 1.8 V supply. The core area of the VGA fabricated in a Magnachip $0.18{\mu}m$ standard CMOS process was about $430{\mu}m{\times}350{\mu}m$. According to measurement results, we can verify that the proposed method is reasonable with regard to the enhancement of dynamic range and the better linear-in-dB characteristics.

A 8b 1GS/s Fractional Folding-Interpolation ADC with a Novel Digital Encoding Technique (새로운 디지털 인코딩 기법을 적용한 8비트 1GS/s 프랙셔널 폴딩-인터폴레이션 ADC)

  • Choi, Donggwi;Kim, Daeyun;Song, Minkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • In this paper, an 1.2V 8b 1GS/s A/D Converter(ADC) based on a folding architecture with a resistive interpolation technique is described. In order to overcome the asymmetrical boundary-condition error of conventional folding ADCs, a novel scheme with an odd number of folding blocks and a fractional folding rate are proposed. Further, a new digital encoding technique with an arithmetic adder is described to implement the proposed fractional folding technique. The proposed ADC employs an iterating offset self-calibration technique and a digital error correction circuit to minimize device mismatch and external noise The chip has been fabricated with a 1.2V 0.13um 1-poly 6-metal CMOS technology. The effective chip area is $2.1mm^2$ (ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$) and the power dissipation is about 350mW including calibration engine at 1.2V power supply. The measured result of SNDR is 46.22dB, when Fin = 10MHz at Fs = 1GHz. Both the INL and DNL are within 1LSB with the self-calibration circuit.

A 2.5 Gb/s Burst-Mode Clock and Data Recovery with Digital Frequency Calibration and Jitter Rejection Scheme (디지털 주파수 보정과 지터 제거 기법을 적용한 2.5 Gb/s 버스트 모드 클럭 데이터 복원기)

  • Jung, Jae-Hun;Jung, Yun-Hwan;Shin, Dong Ho;Kim, Yong Sin;Baek, Kwang-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.87-95
    • /
    • 2013
  • In this paper, 2.5 Gb/s burst-mode clock and data recovery(CDR) is presented. Digital frequency calibration scheme is adopted to eliminate mismatch between the input data rate and the output frequency of the gated voltage controlled oscillator(GVCO) in the clock recovery circuitry. A jitter rejection scheme is also used to reduce jitter caused by input data. The proposed burst-mode CDR is designed using 0.11 ${\mu}m$ CMOS technology. Post-layout simulations show that peak-to-peak jitter of the recovered data is 14 ps with 0.1 UI input referred jitter, and maximum tolerance of consecutive identical digit(CID) is 2976 bits without input data jitter. The active area occupies 0.125 $mm^2$ without loop filter and the total power consumption is 94.5 mW.

Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability (다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구)

  • Kang, Byeol;Lee, Yongwoon;Ryu, Changkook;Yang, Won
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2017
  • Recently usage of biomass is increased in pulverized coal power plants for reduction of $CO_2$ emission. Many problems arise when thermal share of the biomass is increased, and milling of the biomasses is one of the most important problems due to their low grindability when existing coal pulverizer is used. Grindability of coal can be measured through the HGI (Hardgrove grindability index) equipment as a standard, but method of measuring biomass grindability has not been established yet. In this study, grinding experiment of coal and biomass was performed using a lab-scale ball mill. One type of coal (Adaro coal) and six biomasses (wood pellet (WP), empty fruit bunch (EFB), palm kernel shell (PKS), walnut shell (WS), torrefied wood chip (TBC) and torrefied wood pellet (TWP)) were used in the experiment. Particle size distributions of the fuels were measured after being milled in various pulverization times. Pulverization characteristics were evaluated by portion of particles under the diameter of $75{\mu}m$. As a result, about 70% of the TBC and TWP were observed to be pulverized to sizes of under $75{\mu}m$, which implies that they can be used as alternative biomass fuels without modification of the existing mill. Other biomass was observed to have low grindability compared with torrefied biomass. Power consumption of the mill for various fuels was measured as well, and the results show that lower power was consumed for torrefied biomasses. This result can be used for characterization of biomass as an alternative fuel for pulverized coal power plants.

A 200-MHz@2.5V 0.25-$\mu\textrm{m}$ CMOS Pipelined Adaptive Decision-Feedback Equalizer (200-MHz@2.5-V 0.25-$\mu\textrm{m}$ CMOS 파이프라인 적응 결정귀환 등화기)

  • 안병규;이종남;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.465-469
    • /
    • 2000
  • This paper describes a single-chip full-custom implementation of pipelined adaptive decision-feedback equalizer (PADFE) using a 0.25-${\mu}{\textrm}{m}$ CMOS technology for wide-band wireless digital communication systems. To enhance the throughput rate of ADFE, two pipeline stage are inserted into the critical path of the ADFE by using delayed least-mean-square (DLMS) algorithm Redundant binary (RB) arithmetic is applied to all the data processing of the PADFE including filter taps and coefficient update blocks. When compared with conventional methods based on two's complement arithmetic, the proposed approach reduces arithmetic complexity, as well as results in a very simple complex-valued filter structure, thus suitable for VLSI implementation. The design parameters including pipeline stage, filter tap, coefficient and internal bit-width and equalization performance such as bit error rate (BER) and convergence speed are analyzed by algorithm-level simulation using COSSAP. The singl-chip PADFE contains about 205,000 transistors on an area of about 1.96$\times$1.35-$\textrm{mm}^2$. Simulation results show that it can safely operate with 200-MHz clock frequency at 2.5-V supply, and its estimated power dissipation is about 890-mW.

  • PDF

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.