• Title/Summary/Keyword: 전단 파단

Search Result 155, Processing Time 0.02 seconds

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향)

  • Lee, Cheol-Ho;Jeong, Sang-Woo;Kim, Jin-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.337-348
    • /
    • 2003
  • 본 연구는 8개의 RBS (reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 본 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험체는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 본 연구의 제한된 실험자료 및 접합부에서 요구되는 바람직한 거동기준을 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.

  • PDF

Influence of Fiber Breaks on the Frictional Work in a Continuous Fiber-Reinforced Ceramic Matrix Composite (장섬유로 보강된 세라믹 복합재료에서 섬유파단이 마찰일에 미치는 영향)

  • 조종두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1730-1737
    • /
    • 1994
  • Theoretical equations for an influence of fiber breaks on the frictional heating phenomenon in a uniaxially fiber-reinforced ceramic matrix composite are formulated. The microslip and gross slip phases are considered for deriving the equations. During a complete loading/unloading cycle, the work done against friction is derived. In order to estimate interfacial shear in a unidirectionally reinforced ceramic matrix composite which has fiber fractures as well as matrix cracks, parametric studies using the derived equations are done. In a case of less than 10% fiber fractures, additional frictional work due to fiber breaks can be neglected compared to the rest.

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

High-Speed Shear Test Characterization of Sn-Ag-Cu-In Quaternary Solder Joint (Sn-Ag-Cu-In 4원계 무연솔더 조인트의 고속 전단 특성)

  • Kim, Ju-Hyung;Hyun, Chang-Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • With Pb-free solder joints containing Sn-Ag-Cu-based ternary alloys (Sn-1.0 wt.%Ag-0.5Cu and Sn-4.0Ag-0.5Cu) and Sn-Ag-Cu-In-based quaternary alloys (Sn-1.0Ag-0.5Cu-1.0In, Sn-1.2Ag-0.5Cu-0.4In, Sn-1.2Ag-0.5Cu-0.6In, and Sn-1.2Ag-0.7Cu-0.4In), fracture-mode change, shear strengths, and fracture energies were observed and measured under a high-speed shear test of 500 mm/s. The samples in each composition were prepared with as-reflowed ones or solid-aged ones at $125^{\circ}C$ to 500 h. As a result, it was observed that ductile or quasi-ductile fracture modes occurs in the most of Sn-Ag-Cu-In samples. The happening frequency of a quasi-ductile fracture mode showed that the Sn-Ag-Cu-In joints possessed ductile fracture properties more than that of Sn-3.0Ag-0.5Cu in the high-speed shear condition. Moreover, the Sn-Ag-Cu-In joints presented averagely fracture energies similar to those of Sn-Ag-Cu joints. While maximum values in the fracture energies were measured after the solid aging for 100 h, clear decreases in the fracture energies were observed after the solid aging for 500 h. This result indicated that reliability degradation of the Sn-Ag-Cu-In solder joints might accelerate from about that time.

Fabrication Method of Ni Based Under Bump Metallurgy and Sn-Ag Solder Bump by Electroplating (전해도금을 이용한 Ni계 UBM 및 Sn-Ag 솔더 범프 형성방법)

  • Kim, Jong-Yeon;Kim, Su-Hyeon;Yu, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.33-37
    • /
    • 2002
  • 본 연구에서는 전해도금법을 이용하여 플립칩용 Ni, Ni-Cu 합금 UBM (Under Bump Metallurgy) 및 Sn-Ag 무연 솔더 범프를 형성하였다. 솔더 범프의 전해도금시 고속도금 방법으로 균일한 범프 높이를 갖도록 하는 도금 조건 및 도금 기판의 역할로서의 UBM의 영향을 조사하였다. Cu/Ni-Cu 합금/Cu UBM을 적용한 경우 음극시편의 전극 접점수를 증가시켰을 때 비교적 균일한 솔더 범프를 형성시킬 수 있었던 반면, Ni UBM의 경우는 접점수를 증가시켜도 다소 불균일한 솔더 범프를 형성하였다. 리플로 시간을 변화하여 범프 전단 강도 및 파단 특성을 조사하였는데 Ni UBM의 경우 Cu/Ni-Cu 합금/Cu UBM에 비해 전단강도가 다소 낮은 값을 가졌고 금속막이 웨이퍼에서 분리되는 파괴 거동이 관찰되었다.

  • PDF

Characteristic of Rolling Contact Fatigue in Silicon Nitride Ceramics (질화규소세라믹스의 접촉피로 특성)

  • Yu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.224-228
    • /
    • 1997
  • Rolling contact fatigue tests were performed for two types silicon nitrides using disk- type specimens. Materials showed a fatigue behaviour similar to that typically found in metallic materials From the fractographic and metallographic observations, it has been found that the crack initation in the silicon nitrides subjected to rolling contact fatigue is to be induced by cyclic subsurface shear stress, as is known in steel bearing. On the mid-sections of the specimens, many subsurface cracks which lay parallel to the contact surface can be found at a depth where fluctuation of the Herzian shear stress was the maximum.

  • PDF

An Experimental Study on Structural Behaviors of Double Shear Bolted Connections Fabricated with Ferritic Stainless Steel (STS430) (페라이트계 스테인리스강(STS430) 이면전단 볼트접합부의 구조거동에 관한 실험적 연구)

  • Kim, Tae Soo;Kim, Min Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.463-474
    • /
    • 2013
  • Many experimental and numerical researches for thin-walled carbon steel and austenitic stainless steel single shear bolted connections have been conducted and the modified design equations of ultimate strength were proposed. In this study, the tests of double shear bolted connections with bolt arrangements ($2{\times}1$, $2{\times}2$) and end distance parallel to the loading direction as main variables were performed. Specimens were planed with a constant dimension of edge distance perpendicular to the loading direction, bolt diameter, pitch and gauge like single shear bolted connections. The test results such as ultimate strength and fracture mode were compared with those of current design standards. Furthermore, modified block shear equations for double shear bolted connections were suggested.

Interlaminar Shear Strength of Carbon Fiber Epoxy Composite with Nickel Film (니켈 박막 첨가에 따른 탄소섬유 에폭시 복합재료의 층간 계면 특성)

  • Lee, Min-Kyung
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.94-98
    • /
    • 2015
  • This paper reports the effects of nickel film interleaves on the interlaminar shear strength(ILSS) of carbon fiber reinforced epoxy composites(CFRPs). A nickel thin film was deposited onto the prepreg by radio frequency(RF) sputtering at room temperature. The ILSS of the nickel film interleaved hybrid composites was increased compared to that of the composites without interleaves. To understand the mechanism of enhancement of the ILSS, the fracture surface of the tested specimens was examined by scanning electron microscopy(SEM). The metal interleaves were acted as a reinforcement for the matrix rich interface and the shear property of their composites improved by enhancing the resistance to matrix cracking.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Force-Deformation Relationship of Bearing-Type Bolted Connections Governed by Bolt Shear Rupture (볼트 전단파단이 지배하는 지압형식 볼트접합부의 힘-변형 관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Well-designed bolted connections can exhibit excellent ductile behavior through bearing mechanism until the occurrence of bolt shear rupture. The ultimate strength analysis of eccentric bolted connections is an economical and mechanistic approach which uses such ductility. However, the bolt load-deformation relationship, which forms basis of the current practice, is based on very limited combinations of bolt and steel materials. The primary objective of this study was to establish the general bolt force-deformation relationship based on systematic single-bolt bearing connection tests. The test results showed that the projected area of the bolt hole and the strength and thickness of the plate to be connected are the main factors affecting the force-deformation relationship. The results of this study can be used for the instantaneous center of rotation method (ICRM) to achieve more accurate analysis and economical design of a variety of group-bolted connections subjected to eccentric shear.