본 논문에서는 일차전단변형 평판 이론(FSDT)의 개선을 통한 복합재료 적층평판의 효율적 열응력 해석 기법을 제안한다. 횡방향 응력 성분에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 이용하여 횡방향 변형에너지를 개선하였다. 가정된 횡방향 전단응력 성분들은 효율적 고차이론으로부터 구하였으며, 면내 변위 성분들은 일차적층평판 이론의 변위장을 사용하였다. 또한, 열응력 해석에 있어서 횡방향 수직 변형을 효과적으로 고려하기 위해서 횡방향 수직 변위를 두께방향에 대하여 포물선으로 가정하였다. 이 과정을 통하여 얻어진 전단변형 에너지를 본 논문에서는 횡방향 수직 변형이 고려된 개선된 일차전단변형이론(EFSDTM_TN)이라고 명명하였다. 제안된 EFSDTM_TN은 복합재료 적층평판의 열탄성 거동을 해석함에 있어서 횡방향 수직 변형이 고려된 일차전단변형 평판 이론(FSDT_TN)과 비슷한 수준의 계산만을 필요로 하며, 동시에 후처리 과정을 통하여 열변형 및 열응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 FSDT_TN, 3차원 탄성해 등의 결과와 비교하여 검증하였다.
본 논문에서는 고전적 고차전단변형이론(HSDT)을 이용한 복합재료 적층평판의 응력해석 개선기법을 소개한다. 횡방향 응력들에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 통하여 횡방향 전단 변형에너지를 개선하였다. 가정된 횡방향 전단응력은 면내 변위가 5차 다항식을 갖는 고차 지그재그 이론으로부터 구하였으며, 변위들은 고전적 고차전단변형이론의 변위장을 사용하였다. 이 과정을 통하여 얻어진 변형 에너지를 본 논문에서는 EHSDTM라고 명명하였으며, 이 이론을 통해 복합재 적층평판의 변위와 응력을 계산함에 있어서 HSDT와 비슷한 수준의 계산적 효율을 가지면서, 동시에 최소자승오차법에 따른 후처리 과정을 적용함으로써 변위와 응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 고전적 HSDT, 3차원 탄성해 등의 여러 결과들과 비교하여 검증하였다.
본 논문에서는 일차전단변형이론(FSDT)을 이용한 복합재료 적층평판의 고정밀 해석기법을 소개한다. 전단수정계수가 자동적으로 포함되도록 횡방향 전단 변형에너지를 혼합변분이론(mixed variational theorem)을 이용하여 개선하였다. 혼합변분이론에서는 변분을 횡방향 응력들에 대해서만 취하였다. 가정된 횡방향 전단응력은 효율적인 고차이론(Cho and Parmerter, 1993)으로부터 구하였다 횡방향 수직응력은 3차 다항식으로 가정하였고, 무전단 응력조건과 평판의 윗면과 아랫면에서의 응력을 만족하는 조건을 부과함으로써 얻었다. 한편, 변위들에 대해서는 일차전단변형이론의 변위장을 사용하였다. 이렇게 해서 얻어진 변형 에너지를 본 논문에서는 EFSDTM3D이라고 명명 하였다. 본 논문에서 개발된 EFSDTM3D는 변위와 응력의 계산에서 고전적인 FSDT와 같은 정도의 계산 효율을 가지면서, 동시에 변위와 응력의 두께방향의 정확도를 면내 방향 응력들에 대한 최소오차자승법에 기초하여 응력 회복 과정을 적용함으로써 개선하였다. 계산된 결과는 고전적인 FSDT, 3차원 탄성해, 그리고 참고문헌 중에서 이용 가능한 결과들과 비교하여 검증하였다.
복합샌드위치평판은 복합재료를 갖으면서 강성이 있는 얇은 면재와 저밀도인 두꺼운 심재로 구성되어 있다. 본 연구에서는 국부전단변형을 고려한 복합면재를 갖는 샌드위치평판을 해석을 위한 지배방정식을 유도하였고, 해석적인 방법으로 해석을 하였다. 해석방법의 타당성을 확인하기 위하여 전체 전단변형을 고려한 일반 적층판 이론의 값과 비교하였다. 그리고 복합면재와 심재의 국부전단변형을 고려하였으므로 일반 적층판 해석에도 적용시킬 수 있음을 보였다.
본 연구에서는 사각형 모듈의 인발성형된 복합재료 바닥판의 휨 거동에 대한 해석 모델을 개발하였다. FRP 바닥판의 해석 모델은 FSDT 평판 이론을 기반으로 임의 적층각을 지닌 FRP 바닥판의 처짐을 예측할 수 있었다. 수치적 예제에서는 네 변이 단순 지지된 등분포 하중을 받는 사각형 모듈의 FRP 바닥판을 2차원 평판 유한 요소해석을 적용하여 수행하였고, 해석 결과에 대해서는 바닥판 길이-높이의 비와 화이버 각도의 변화에 따른 효과에 대해 역점을 두고 다루었다. 연구 결과, 본 연구에서 제안한 해석 모델이 FRP 바닥판의 휨 거동을 해석하고 예측하는데 효과적이고 정확하다는 것이 입증되었다. 또한, FRP 바닥판의 높이가 높아질수록 plate 해석 이론에 있어서 일차전단변형이론(First order Shear Deformable laminated plate Theory : FSDT)이 아닌 고차전단변형(Higher order Shear Deformable plate Theory : HSDT)의 필요성에 대해 언급하였다.
본 연구에서는 등방성 및 복합적층판 해석을 위해 추가변형률을 갖는 개선된 4절점 Reissner-Mindlin 평판휨요소를 제안하였다. 전단잠김현상과 가상적인 제로에너지모드를 제거하기 위해 비적합 변위모드와 Bubble 함수식에 근거한 새로운 형태의 전단변형률을 추가함으로써 횡방향 전단거동을 개선하였다. Andelfinger와 Ramm(1993)이 제시한 기본적인 추가변형률은 면내거동을 개선시키고자 그대로 적용하였다. 1차전단변형이론에 근거한 새로 개발된 4절점 평판요소를 '14EASP'라 명하였다. 14EASP 유한요소의 특징과 성능을 평가하고자 몇가지의 수치해석예제를 적용하였으며, 다른 유한요소 및 해석적인 해와 비교하였다. 그 결과 본 연구에서 제안한 14EASP는 보다 안정적이고, 수렴성이 빠르며, 특히 요소형상이 왜곡된 경우에도 정확한 결과를 도출하였다.
등분포 열 하중으로 좌굴되고 단순 지지된 준 등방성 직사각형 복합재 평판의 자유진동 해석에 관한 연구를 수행하였다. Von Karman형 비선형 변형도 성분을 1차 전단변형 평판이론에 적용하여 유한요소법으로 후 좌굴 해를 구하였으며 Duhamel-Newman형 탄성이론이 아울러 적용되었다. 후 좌굴 해석으로부터 계산된 변위를 이용하여 좌굴된 평판의 강성을 재평가한 후, 고유치 문제인 자유진동 해석을 수행하였다. 준 등방성 [.+-.45/0/90]s 직사각형 평판의 폭 대 두께비 및 폭 대 길이비를 변화시켜 이들 설계변수가 평판의 자유진동 특성에 미치는 영향을 분석하였다.
많은 장점을 가진 복합재료를 사용한 보강판에 대하여 지금까지 많은 연구자들이 변위법에 근거한 등매개변수 평판 요소와 보요소를 결합한 유한요소법을 사용하여왔다. 이러한 유한요소법은 보요소를 평판 요소의 절점에 대한 강성으로 치환하기 때문에 보강재에 대한 국부적인 거동을 파악할 수 없으며 복합적층 구조인 경우 그 적용성이 제한적이다. 따라서, 본 연구에서는 복합재료 보강판의 해석에 있어 보강재 및 판에 대하여 3차원 쉘요소를 사용하여 거동을 분석하고자 한다. 본 연구에서는 Reissner-Mindlin의 1차 전단변형이론을 사용하였다. 그러나 Reissner-Mindlin이론에 의한 등매개변수 평판 휨 요소는 판의 두께가 얇아지는 경우 일반적으로 전단잠김현상과 가상의 제로에너지 모드가 발생하는데 이를 제거하기 위해 대체전단변형률장을 사용하였다. 폭-두께비, 형상비 뿐만아니라 경사판의 경사각 변화에 따른 임의방향 보강재를 갖는 단순지지된 복합적층 구형 및 경사판에 대한 처짐분포를 비교 분석하였다.
본 연구는 지그재그모델에 근거하여 두꺼운 금속, 폴리머 복합재료 면재의 전단변형 효과를 고려해서 샌드위치평판의 휨해석 지배방정식을 유도하였으며, 판의 네 변은 단순지지 되어 있다고 가정하였다. 역대칭 적층면재의 화이버 각도와 면재의 적층수를 변화시켜가며 휨해석의 결과를 나타내었다. 해석방법의 정확성을 위해 일반 적층판이론의 값과 비교를 하여 검증을 하였다. 그 결과 적층판이론으로 구한 값보다 처짐에 있어서 더 큰 값을 나타냄을 알 수 있었는데, 그 이유로는 본 해석방법이 면재, 심재 모두 휨강성과 전단변형을 고려하였기 때문이라 사료된다. 강재, 폴리머 복합면재를 갖는 샌드위치평판을 설계할 때 제시된 정보를 유용하게 이용될 수 있을 것이다.
본 논문에서는 평판 구조물의 효율적인 해석을 위한 4절점 평판휨 요소를 개발하였다. 이 요소는 전단변형을 고려하기 위해 Mindlin평판이론에 의하여 유도하였다. 평판휨 문제에서 4절점요소와 같은 저차의 등매개변수 Mindlin평판요소는 전단강성을 실제보다 강하게 평가하기 때문에 얇은 평판에서는 요소의 기능을 발휘하지 못한다. 이러한 문제점을 극복하기 위해 4절점 요소에 5개의 비적합변위모드를 추가함으로써 개선된 결과를 얻을 수 있었으며, 개발된 요소는 유사영에너지모드를 발생시키지 않는다. 아주 얇은 평판에서도 요소의 형상과 무관하게 전단구속현상을 극복하였으며, 예제 해석으로부터 변위의 신속한 수렴성과 단면력의 분포가 양호한 결과를 얻을 수 있었다. 또한 요소형상비가 매우 큰 경우에도 좋은 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.