A2 2dd o3 EFMEHX G| &Y

Analysis of Sandwich Plates with
Composite Facings based on Zig-Zag Models
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ABSTRACT : This study presents a governing equations of bending behavior of
sandwich plates with thick metal, polymer composite facings. Based on
zig-zag models for through thickness deformations, the transverse shear
deformation of composite facings is included. All edges of plate are assumed
to be simply supported. Results of the bending analysis under lateral loads
are presented for the influence of various lay up sequences of antisymmetric
angle-ply laminated facings. The accuracy of the approach is ascertained by
comparing solutions from the sandwich plates theory with composite facings
to the laminated plates theory. Since the present analysis considers the
bending stiffness of the core and also the transverse shear deformations of
the laminated facings, the proposed method showed higher than that
calculated according to the general laminated plates theory. The information
presented might be useful to design sandwich plates structure with metal,
polymer matrix composite facings.
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1. INTRODUCTION

The sandwich plate is constructed by
combining two pieces of plate with high
stiffness and one light one with a thick
core material. The progress in material
science and production techniques has led
to wide application in the manufacturing of
sandwich plate structures. Much research
concerning the sandwich structure has been
conducted since 1940(6). In the history of
theoretical analysis, the face layers of the
sandwich plate were first assumed to be
membranes with no bending stiffness by
Reissner(8), and the governing equation(7)
was derived by him. For the face plate, the
classical plate theory ignored the strain of
the core in the direction of the thickness in
order to derive the governing equation.
The effect of transverse shear strain was
further considered by Whitney(8) and
Pagano(9) by employing the Mindlin Theo-
rem. Owing to the existence of a vast
literature on isotropic facings sandwich
plates, this study is limited to sandwich
plates having composite facings materials.
Recently there has been interested in the
analysis of sandwich plates having generally
metal, polymer laminated facings. A series
of such analyses using the energy method
was conducted by Rao and Kaeser and
Rao(7). However, they only considered shear
deformation of the core. The objective of
this study is to present a formulation of
governing equation for a general sandwich
plates with laminated facings including
individual effects of transverse shear de-
formation and bending stiffness. The obvious
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choice to model sandwich plates with thick
composite facings is a zig-zag deformation
as was used by Allen(10).

The present model is a development of
the Allen zig-zag model(10). By including
transverse shear deformations of the com-
posite facings, current method will be
capable of analyzing thick laminated plates,
general anisotropic sandwich plates. The
results of the present model will be
compared with analytical solution.

2. The DEFORMATIONS AND
STRAINS

The deformations through the thickness
of sandwich plates with thick composite
facings using the zig-zag model(10) are
shown in Fig.1, where (x1 2}), (x3,25),(x3, 23)
are local coordinates of the upper face,
core and lower face, respectively. From
Fig.1, the displacement of the upper face,
core and lower face can be expressed as
follows:
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(a) Geometry of a sandwich plate

(b) Deformations through the sandwich
thickness with shear deformation by
the zig-zag models(10)

Fig.1 Cross sactions of assumed deformation

of the sandwich piates with composite
facings
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For the upper face:

In the x-direction

u(x,v,z) = u.(x,y) + -1210,‘2 + 52-1-0,. — 2,6y

(1.a-1)
and in the y-direction,

t
vi(x,v,2) = v (x,y) + —tz'-eﬁ + -2-’-0,. ~ 2,6,

(1.a-2)
and in the z-direction

wi(x,v,2) = w,(x,y)

(1.a-3)

The same method can be used to calculate
deformations in the core:

uy (x,¥,2) = uy(x,y) — 2,0, (1.b-1)
va(x,v,2) = vo(x,y) — 2,6y, (1.b-2)
wy(x,v,2z) = w,(x,y) (1.b-3)

For the lower face:

t
uz(x,y,z) = u,(x,y) — -1210,2 + ~23-0,‘3 — 230y

(1.c-1)

t
vi(x,y,2) = v,(x,y) — -32’- 0, + -—22- 6,3 — 236,

(1.¢c-2)
wix,v,2) = wo(x,y) (1.c-3)
where u, v, w are the displacement of the
midsurface in the x,y,z axes, and 4,, 8, are
the rotation angles of the xy and yz-plane
caused by flexure and t, h are the thickness
of composite facings and core, while the
subscripts 1,2,3 denote upper face, core,
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and lower face, respectively.
The strains in terms of the displacements
are given by the usual expressions:

e,‘—-—%i Exy %’%4——%
e,=—gij2 s,,=%+—g§'

fa =+ B 96y +-—t:.2!- 8::, -z 99

2 ox
Yol = Tuy +2(-‘9§’§1+%)+%(8g31 +ﬁ‘%l)
—a( G5
r”l=%+%=%‘9u

Similar expressions are obtained for the
lower face and core.
We assume that Hooke’s Law is valid

and the constitutive equations are given
by:

o5 Qu Qu Qs 0 0] (e
dy Qu Q2 Qs 0 0 €
0= |7y = | Qv Qs Qu 0 0 Txy Y]
T 0 0 0 Qu Qu|7a
Ty 0 0 0 Qu Qllir.

in which @ terms are the usual stiffness
coefficients.

Integrating the stresses through the
thickness of each component, we get the
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inplane forces and moment resultants for
the upper face, core, and lower face in the

form:

Ny Ay Ap A By By By e+ ™
N, Ayp Ap Ag By By Bx| | &)+ ™
Ny A Ay Ag By By By | |l + &
M, By Biz By Dy Dy Dyg x5

M, By Bz By Dy; D Dy Xy

M,/ By By Bg Dy Dy D xyio

(5)

The shear stress resultants are given by:

Ny (Qu| [AR AY
ol lad -

Txz

N 7)(1
= (AQ)

A A |y, Y

i

(6)

where (A) is the extensional stiffness matrix,
(B) is the extensional-bending coupling
stiffness matrix, (D] is the bending stiffness
matrix.

AP =AP + AP +AP = B [T, 0

n

BY =B +BY +BP = X 72 Qe

D = DY + DP + DY = ngf 2 Qo dz
(i,j=1,2.6)
AP = AP + AR+ AP = KK, 3 [ T,z
(k.1=4,5) (1)
where 1, 2, and 3 refer to upper face, core
and lower face, respectively.

The strain energies of the upper face,
core, and lower face are given by:
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U = _ZLfJ;[ (™ + &%), T[AY] (™ + &),
+ 2(e™+ 69 "[BYT1(K),
+ (K); "[D¥] (K) Jdxdy (8

where i=1,2,3 refers to upper face, core.
and lower face, respectively.

The corresponding shear strain energies
are:

U = %fffx (es)iT [A(i)k‘]i (&) idxdy (9)

where Ug and Uy are bending and shear

energies of upper face, core, and lower
face. Substituting eqns (2) and (3) into
eqns (8) and (9) we get a long expression
for total strain energies of the upper face,
core, and lower face.

The total internal energy is then

=4[ [+, T[A (™ + e,
+2(e™+ &), T[BYI(K): + (K),"[DP] (K),
+ (EE)iT [A(i)kl]i (Es)i]dXdY (10)

External energies due to lateral loads are
given by the equation:

Vi = - [ [ PGx.y)waxdy (11D

The total potential energy is the sum of
internal energies and external energies:

T= 2L [ ] (4™, A% (24em),

+2(+e™),; TIBY (K)i+ (K); "[DY] (K),

+ (9T [AW (&9]dxdy — ffA P(x, y) w dxdy
(12)
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3. GOVERNING EQUATION

Here we use the principle of virtual dis-
placements to derive the governing equations
appropriate for the displacement field in
eqns (1) and constitutive equation in eqns
(4). Therefore, the application of the prin-
ciple of total potential energy gives nine
governing equations.

The first of these is given below, the
others being of similar form(4).

U,

0 [A(l) (2)+A1(3)]

+ [AQ + AL + A9 S * Un

+ [ZA(I) +2A(2) (3)] a U°

+ [A(l) (2) + A(3) ]_zg

2
+ (AP + AP+ a1 Tl

+ [A(l) (2) + A(S) +A(l)

v @+ A1

+ [aR(4) - mi]
’ we%%)—ss)]%%&
+ [AaRan - “’1
R——
+ (9155
+ [A“’(J‘)*A‘”(“)

- B - B 15k

s [ A (1)( AP - (z)]
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© [ad(h)-ve-ad(})] ¥

2
+ [AQ®) 2B - AP | 3o

+ [ap-Bi-ap(y)] S
o [-nalF)] 5

* [ad(3)-A8(3) () -2(3)

@ _ p1.902
. — By’ — Bg Fre

«[-a()-oe] 58
b)) 5

+ [ -AQa) -] Lt

(13)

We will analyze a rectangular plate with
length a and width b. The edges of the
plate are assumed to be simply-supported
such that shear deformations are prevented
in the cross-sectional planes around the
edges.

The boundary conditions of such a plate
are idealized as:

W= Mx=0yl$0h= 0y3=0 at x=0, a

W= M,= 6, =6,=0,=0 at y=0. b

(14)

For essential boundary conditions given
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eqn (14) above, assumed displacements
are chosen in the form :

oD 0
1 .
u = ?;0 ..Z‘OU"'" cosax sinfy ,
& &,
vy = mz.:.u r\“OV,,,, sinax cosfy
Wi = 2 OWf,m sinax sinfy,
6q = 2 nsoxﬁ"‘ cosax sinfy
5 5
0y = ng() 2 Yo sinax cosfy,
$h 6
6o = PN n=OX,,,,. cosax sin Ay
3 7
by = “§0 2 Yom sinax cosfy,
[+ ]
0 = ng:o “ZOXﬁm cosax sinfy
$ 9
G = '?_.:0 nmoY'"“ sinax cos fy
(15)
where

= mz ~ bz
a a'B b

and a and b are length and width of the
plate, respectively, and m and n are the
half-wavelength integers.

Substituting eqn (14) into eqn (12}, and
collecting the coefficients, one obtains:

[K]1{s} = {F} (16)
Matrix (K] is the coefficient matrix, { &}
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and {F} refer to the displacement vector
and load vector.

4. NUMERICAL EXAMPLE

The material properties of facings and
core are indicated in Table 1. The problem
was solved using a series which exactly
satisfied the boundary conditions.

For simply supported antisymmetric
angle—ply faces sandwich plate as shown in
Fig. 2. plate stiffness are given by:

A=A =Ass=Bi1s=Bas=Di16=D2=0.

Results are illustrated in Table 2, Fig.3
for square laminated plates with two layers
{0/90). The accuracy of the approach is
ascertained by comparing solutions from
the sandwich plates theory with composite
facings based on ‘zig-zag models’ to the
laminated plates theory. The solution in

Table 1. Material properties of faces and core
for analysis model of anisotropic sand-
wich plates with composite facings (Gpa)

FACE Eq E2 Viz Giz
(Graphite/epoxy) | 2070 | 5.17 | 0.25 | 5.17
CORE Ex=Ey

E. Gy G
(Glass fabric Y = Gy

honeycomb) 0.300 | 0.241 | 0.117 0

Fig. 2 Geometry of a sandwich plates with
composite facings
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the present paper is compared in Table 2.

The present results considering the bending
stiffness of the core and also the transverse
shear deformations of the laminated facings
are higher thah that calculated according to
the first order shear deformation theory,
higher order shear deformation theory

Table 2. Comparison of normalized central de-
flection with side to thickness ratio
(a/h) of a laminated plates,(0/90)

theory

h CPT FSDT HSDT | PRESENT
a

4 1.3257 | 5.1275 | 7.6697 7.8850
5 1.3257 | 5.1275 | 7.6697 7.8850
10 1.3257 | 2.3398 | 3.1180 3.1820
20 1.3257 | 1.5848 | 1.7934 2.1466
25 1.3257 | 1.4920 | 1.6266 1.6694

100 1.3257 | 1.3362 | 1.3447 1.3522

3.00

280 -| e .

-y HSDT
§ - FsOT |
{

§ 280 e GWPT(This stuty) |
g e
& 240 4
5
& 220
o

200

180

—_— "
160 L e SR B e e A T

0 10 20 30 40 50 60 70 ‘BO 80 100
SIDE TO THICKNESS RATIO(a/h)

Fig. 3 Comparison of normalized central
deflection according to a first order
shear deformation theory, high order
shear deformation theory, and classical
plate theory with side to thickness
ratio (a/h) of a general laminated
plates, (0/90)
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shown in Table 2, Fig. 3! the difference are

particularly significant for ratio a/h < 5.
Results are illustrated in Fig. 4 for

sandwich plates with composite facings.

[ w,E;t°10%/(q,a*)]

The present results are higher than that
calculated according to the first order shear
deformation theory higher order shear
deformation theory shown in Fig. 4. Table
3. Fig. 5 show the comparison between the
present theory and classical sandwich theory.
The classical sandwich theory considers
only transverse shear deformations of the
core., The bending stiffness of the core is
excluded, since it was assumed that the
core is very flexible.

8.00

7.00 -
8.00 -

5.00 J

400

3.00

DISPLACEMENT(Wz)

2.00

[ 10 0 30 40 &0 80 70 80 80 100
SIDE TO THICKNESS(a/h)

Fig. 4 Comparison of central deflection
according to a first order shear
defarmation theory, high order shear
deformation theory and classical
plate theory with side to thickness
ratio(a/h) of a sandwich plates with
composite facings, (0/core/0)
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Table 3. Comparison of central deflection according
to modified sandwich plates theory
with side to thickness ratio(a/h) of a
sandwich plates with composite facings
including shear deformation of face,
and core, (0/core/0),

A
a/h Uil Ref.(4) present
4 11.7349 7.8850
11.7349 7.8850
10 4.4247 3.1820
20 2.2161 2.8466
25 1.9321 1.6694
100 1.4482 1.3522
12.00
10.00
CICER
g
&
2 e
Q
5
&
a 400
2.00
0.00 T Y T T T T T T T

0 10 20 30 40 S0 € 70 80 W 100
SIDE TO THICKNESS(a/h)

Fig. 6 Comparison of central deflection
according to modified sandwich plates
theory with side to thickness ratio
(a/h) of a sandwich plates with
composite facings including shear
deformation of face, core, (0/core/0)

Fig. 6 shows the influence of antisymmetric
angle-ply laminates with ply orientations
(6/6/6/-6/core/6/~8/-6/-6]). Results
are presented for facings of four. The
maximum value of normalized displacement
is seen to occur at 0/0/0/-90/core/90/0/0/0.
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Fig. 6 Central deflection of typical hybrid
sandwich plates with laminated facings
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Fig. 7 Comparison of central deflection
according to variation of upper &
lower face in a sandwich plates
with composite facings

Fig. 7 shows the central deflection related
to thickness of upper face t1 and the lower
face t2. Sandwich plates having symmetric
angle-ply faces are superior compared with
ones having anisotropic faces.
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The (45/-45/core/-45/45) configuration
vields the largest value of moment M,.
plots are given in Fig. 8.

The (90/-90/core/-90/90) configuration
yields the largest value of moment M,.
Plots are given in Fig. 9.

Fig. 10 shows the influence of antisymmetric

angle-ply laminates with ply orientations
(8/6/6/-8/core/6/-8/-8/-8). Results

2.00 <‘
x 150 4
3
z
it 1.00
&
g I
0.50 —@— 90-H0/core 9000
—@— TG-70/core A7070
el 48-45/C0T® /-45/45
0.00 4 | o
~ i 30-30/core +30/30
L—('E* 00/ core 00
0.50 - e
-1.00 T T T T T T T T
0 28 50 75 100 126 150 176 200 225
X-COORDINATE

Fig. 8 Moment(Mx) in y-direction with
variation of fiber angle

MOMENT My

~fF— soLe0/core 1o0m0
—— TOLTOIOOTN L7070
—@— 50L50/GOM® CORES-50/0
i) ASLASICOTE 14548
N 30430/00T8 130730
B 10AUNERTE 1010
—dp— ONVCOrS R
- T T T T T T T T
[:] 25 50 7% 100 128 150 175 200 25

X-COORDINATE

Fig. 9 Moment(My) in x-direction with
variation of fiber angle
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are presented for facings of four. The
maximum value of moment M,y is seen to
occur at 0/0/0/-90/core/90/0/0/0.

i IO COTe - -V-50
e TOTONOL20/C0® 20N TITD
A ASMBUSIAE COTO UELALIAS4S
N J0MO/AO-B0/TO1O D030 30
A V00 COT VNN

MOMENT (Mxy)

-10600 T T T T T T T
0 25 50 75 100 128 150 178 200 228
X-COORDINATE

Fig. 10 Moment(Mxy) in x-direction with
variation of fiber angle

5. CONCLUSIONS

The governing equations for analysis of
bending of sandwich plates with thick
laminated facings based on zig-zag models
are derived. Results of the bending
analysis under latexal uniform loads are
presented for square laminate plates and
sandwich plates with composite facings.

For the laminated plates: the present
analysis considering the bending stiffness
of the core and also the transverse shear
deformations of the laminated facings show
higher than first order shear deformation,
smaller than higher order shear deformation
theory in laminated plates with two
layers(0/90].

For the sandwich plates with composite
facins: It is shown that the influence of
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antisymmetric angle-ply laminates with ply
(8/6/6/-8/core/8/-6/-8/-

6]). Results are presented for composite

orientations

facings with four layers. The maximum
value of moment M,, is seen to occur at
0/0/0/-90/core/90/0/0/0.

The (90/-90/core/-90/90) configuration
yields the largest value of moment ( M,)
and (45/-45/core/-45/45) yields the largest
value of moment ( M,). Since the present

analysis considers the bending stiffness of
the core and also the transverse shear
deformations of the laminated facings, it is
expected that the analysis is capable to
analyze general laminated plates with
shear deformations. Applying the present
method to investigate the bending behavior
of laminated plates, it is necessary to
divide the plate’s thickness into three
components. namely upper face, core, and
lower face. The thickness of each component
is arbitrary.

The information presented might be
useful to design sandwich plates structure
with metal, polymer matrix composite facings.
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