DOI QR코드

DOI QR Code

Efficient Thermal Stress Analysis of Laminated Composite Plates using Enhanced First-order Shear Deformation Theory

일차전단변형이론을 이용한 복합재료 적층평판의 효율적 열응력 해석

  • Han, Jang-Woo (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Jun-Sik (Department of Intelligent Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 한장우 (서울대학교 기계항공공학부) ;
  • 김준식 (금오공과대학교 지능기계공학과) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2012.11.07
  • Accepted : 2012.11.10
  • Published : 2012.12.31

Abstract

In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.

본 논문에서는 일차전단변형 평판 이론(FSDT)의 개선을 통한 복합재료 적층평판의 효율적 열응력 해석 기법을 제안한다. 횡방향 응력 성분에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 이용하여 횡방향 변형에너지를 개선하였다. 가정된 횡방향 전단응력 성분들은 효율적 고차이론으로부터 구하였으며, 면내 변위 성분들은 일차적층평판 이론의 변위장을 사용하였다. 또한, 열응력 해석에 있어서 횡방향 수직 변형을 효과적으로 고려하기 위해서 횡방향 수직 변위를 두께방향에 대하여 포물선으로 가정하였다. 이 과정을 통하여 얻어진 전단변형 에너지를 본 논문에서는 횡방향 수직 변형이 고려된 개선된 일차전단변형이론(EFSDTM_TN)이라고 명명하였다. 제안된 EFSDTM_TN은 복합재료 적층평판의 열탄성 거동을 해석함에 있어서 횡방향 수직 변형이 고려된 일차전단변형 평판 이론(FSDT_TN)과 비슷한 수준의 계산만을 필요로 하며, 동시에 후처리 과정을 통하여 열변형 및 열응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 FSDT_TN, 3차원 탄성해 등의 결과와 비교하여 검증하였다.

Keywords

References

  1. Cho, M., Parmerter, R.R. (1992) An Efficient Higher Order Plate Theory for Laminated Composites, Composite Structure, 20, pp.113-123. https://doi.org/10.1016/0263-8223(92)90067-M
  2. Cho, M., Parmerter, R.R. (1993) Efficient Higher Order Composite Plate Theory for General Lamination Configurations, AIAA Journal, 31, pp.1299-1306. https://doi.org/10.2514/3.11767
  3. Cho, M.H., Oh, J.H. (2004) Higher Order Zig-Zag Theory for Fully Coupled Thermo-Electric-Mechanical Smart Composite Plates, International Journal of Solids and Structures, 41, pp.1331-1356. https://doi.org/10.1016/j.ijsolstr.2003.10.020
  4. Di Sciuva, M. (1986) Bending, Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model, Journal of Sound and Vibration, 105, pp.425-442. https://doi.org/10.1016/0022-460X(86)90169-0
  5. Jonnalagadda, K.D, Tauchert, T.R, Blandford, G.E. (1993) Higher Order Thermoelastic Composite Plate Theories, Analytical Comparison, Journal of Thermal Stresses, 16, pp. 265-284. https://doi.org/10.1080/01495739308946230
  6. Kapuria, S., Achary, G.G.S. (2004) An Efficient Higher Order Zigzag Theory for Laminated Plates Subjected to Thermal Loading, International Journal of Solids and Structures, 41, pp.4661-4684. https://doi.org/10.1016/j.ijsolstr.2004.02.020
  7. Kim, J.-S. (2007) Free Vibration of Laminated and Sandwich Plates using Enhanced Plate Theories, Journal of Sound and Vibration, 308, pp.268-286. https://doi.org/10.1016/j.jsv.2007.07.040
  8. Kim, J.-S., Cho, M. (2007) Enhanced First-Order Theory Based on Mixed Formulation and Transverse Normal Effect, International Journal of Solids and Structures, 44, pp.1256-1276. https://doi.org/10.1016/j.ijsolstr.2006.06.018
  9. Kim, J.-S., Cho, M. (2006) Enhanced Modeling of Laminated and Sandwich Plates Via Strain Energy Transformation, Composites Science and Technology, 66, pp.1575-1587. https://doi.org/10.1016/j.compscitech.2005.11.018
  10. Kim, J.-S., Cho, M. (2006) An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory, Journal of Computational Structural Engineering, 18, pp.407-418.
  11. Kim, J.-S., Han, J.-W., Cho, M. (2011) On the Modification of a Classical Higher-Order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates, Journal of Computational Structural Engineering, 24, pp.249-257.
  12. Levinson, M. (1980) An Accurate Simple Theory of the Statics and Dynamics of Elastic Plates, Mechanics Research. Communications, 7, pp.343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  13. Lo, K.H., Christensen, R.M., Wu, E.M. (1977) A Hig Her-Order Theory of Plate Deformation, Part 2: Laminated Plates, ASME: Journal of Applied Mechanics, 44, pp.669-676. https://doi.org/10.1115/1.3424155
  14. Mindlin, R.D. (1951) Influence of Rotator Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates, ASME: Journal of Applied Mechanics, 18, pp.31-38.
  15. Murakami, H. (1986) Laminated Composite Plate Theory with Improved In-Plane Responses, ASME: Journal of Applied Mechanics, 53, pp.661-666. https://doi.org/10.1115/1.3171828
  16. Murthy, M.V.V. (1981) An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates, NASA Tech. Paper 1903.
  17. Pagano, N.J. (1969) Exact Solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials, 3, pp.398-411. https://doi.org/10.1177/002199836900300304
  18. Reissner, E. (1945) The Effects of Transverse Shear Deformation on the Bending of Elastic Plates, ASME: Journal of Applied Mechanics, 12, pp.69-77.
  19. Reddy, J.N. (1984) A Simple Higher-Order Theory for Laminated Composite Plates, ASME: Journal of Applied Mechanics, 51, pp.745-752. https://doi.org/10.1115/1.3167719
  20. Rohwer, K., Rolfes, R., Sparr, H. (2001) Higher Order Theories for Thermal Stresses in Layered Plates, International Journal of Solids and Structures, 38, pp.3673-3687. https://doi.org/10.1016/S0020-7683(00)00249-3
  21. Seide, P. (1980) An Improved Approximate Theory for the Bending of Laminated Plates, Mechanics. Today, 5, pp.451-465.
  22. Zhen, W., Cheung, Y.K., Lo, S., Wanji, C. (2010) On the Thermal Expansion Effects in the Transverse Direction of Laminated Composite Plates by Means of a Global-Local Higher-Order Model, International Journal of Mechanical Sciences, 52, pp.970-981. https://doi.org/10.1016/j.ijmecsci.2010.03.013