• Title/Summary/Keyword: 전단표면력

Search Result 169, Processing Time 0.03 seconds

Determination of Shear Strength Modification Factors in Drilled Shaft (현장타설말뚝의 전단강도 조정계수 결정법)

  • Kim, Myung-Hak;Michael W. O'Neill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.193-200
    • /
    • 1999
  • An experimental study is described in which a 305-mm-diameter instrumented drilled shaft was installed in a moderately expansive clay soil during the dry season and monitored over a period of about 18 months. The purpose of the study was In investigate the effects of seasonal moisture changes in the soil on the shear stresses imposed on the sides of the drilled shaft and movements of the shaft head. The soil in the vicinity of the test shaft was instrumented to measure suction and ground surface movement and the relation between suction, total stress and shear strength of the soil at the test site was determined through laboratory triaxial compression testing. Daily rainfall and temperatures were also monitored at the test site, the National Geotechnical Experimentation Site at the University of Houston, where control on surface grading and vegetation existed. Over the course of the study induced unit side shear values of up to 54 kPa were measured in the test shaft. A simple computational model was developed that related observed suction changes to unit side shear induced by the expansion of the soil through the use of the laboratory suction-total stress-shear strength relation.

  • PDF

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

A STUDY ON THE RELATIVE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO COMPOMERS (컴포머에 대한 복합레진의 전단결합강도에 관한 연구)

  • Jeong, Song-Ran;Choi, Nam-Ki;Yang, Kyu-Ho;Kim, Seon-Mi;Song, Ho-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.509-516
    • /
    • 2005
  • For the purpose of comparing the bond strengths of compomers to composite resin, composite Z250, and two polyacid modified composite resin, Dyract AP and F2000, were selected and investigated using universal testing machine for measuring the shear bond strengths. Additionally, the failure modes were examined by observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strength of Dyract AP to Z250 were higher than those of F2000, but there was no statistically significant difference between group 1 and group 3(p>0.05), and groups using fresh compomers showed higher bond strength than those using aged compomers(p<0.05). 2. After measuring the shear bond strength of each group, it was highest in group 5 and was lowest in group 9(p<0.05). 3. Although there was no statistically significant difference, groups treated with thermocycling showed lower bond strengths than those of non-thermocycling groups. 4. Overall compomer/composite resin failures were adhesive. Cohesive failures occurred mainly in groups using bonding agent. Based on these results, the application of a bonding agent on fresh polyacid-modified resin composite increases the bond strength between polyacid-modified resin composite and composite resin. Additionally, the surface of aged polyacid-modified resin composite has to be roughened mechanically and a bonding agent has to be used in combination with composite resin.

  • PDF

The influence of surface conditioning on the shear bond strength of self-adhesive resin cement to zirconia ceramics (표면처리방법이 지르코니아와 수종의 시멘트의 전단결합강도에 미치는 영향)

  • Jung, Ji-Hye;Jung, Seung-Hyun;Cho, Hye-Won;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.251-258
    • /
    • 2010
  • Purpose: To evaluate the effect of surface conditioning on the shear bond strength of zirconium-oxide ceramic to 4 luting agents. Materials and methods: A total of 120 diskshaped zirconium-oxide ceramic blocks (3Y-TZP, Kyoritsu, Japan) were treated as follows: (1) Sandblasting with $110\;{\mu}m$ aluminum-oxide ($Al_2O_3$) particles; (2) tribochemical silica coating (Rocatec) using $110\;{\mu}m$ $Al_2O_3$ particles modified by silica; (3) no treatment. Then zirconium-oxide ceramic blocks bonded with 4 luting cements (RelyX luting (3M ESPE), Maxcem (Kerr), Nexus3 (Kerr), Rely X Unicem (3M ESPE)). Each group was tested in shear bond strengths by UTM. A 1-way analysis of variance and 2-way analysis of variance was used to analyze the data ($\alpha$ = .05). Results: RelyX unicem in combination tribochemical silica-coating produced a highest bond strength (P < .05). Air abrasion group and Rocatec treatment groups resulted in significantly higher than no conditioning group (P < .05). RelyX Luting groups showed lower bond strength than other groups. There were significant differences among groups (P < .05). Conclusion: Within the limitation of this study, RelyX Unicem cement provided the highest bond strength and Rocatec treatment enhanced the bond strength.

Evaluation of Friction Properties between Geostrip/Sandpaper Interface (지오스트립/샌드페이퍼 계면에서의 마찰특성 평가)

  • Lim, Ji-Hye;Byun, Sung-Won;Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.27-33
    • /
    • 2006
  • Frictional properties between geostrip and sand paper interface were estimated considering soil particle size also the friction coefficients and angles were determined with normal stress. Three kinds of geostrips of design strength 50, 70, 100 KN/m were used and 5 sandpapers of P100, P220, P320, P400, P600 were used also. Shear strength between geostrip and sand paper interface with design strength showed big difference and this is due to the uniform surface pattern of each geostrip when contact to sandpaper without regard to design strength. Shear strength of geostrip was increased with design strength and geostrips/P100 sandpaper interface showed the biggest value. Finally, all of geostrips showed the decrease phenomena of post-peak strength and this is due to the abrasion of geostrip surface by shear test.

  • PDF

A Study of the Effect of Asperity Change on the Shear Strength of Joint Plane (절리면의 거칠기 변화가 전단강도에 미치는 영향)

  • Cho, Taechin;Suk, Jaewook;Lee, Jonggun
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • Multi-stage shear test has been performed using joint specimens of gneiss, granite and shale to investigate the influence of micro-scale asperity change on the shear strength of joint plane. For each shear test asperity degradation characteristics of joint specimens of different joint surface strength have been analyzed by utilizing the optimum asperity parameter which can reflect the sequential asperity degradation. Elevation of joint surface profile has been measured and both the changes of asperity parameters and micro-scale asperity distribution have been investigated. Two distinctive variation modes of cohesion and friction angle have been delineated and major cause of shear strength parameter change has been analyzed by considering the micro-scale asperity angle change resulting from the abrasion, fracturing and regeneration of micro-scale asperities. Effects of micro-scale asperity variation on the joint shear strength have been also investigated.

The effect of contamination on bonding of orthodontic brackets with a self-etching prirneriadhesive (Self-etching primer/adhesive를 사용한 교정용 브라켓의 접착시 오염이 전단결합강도에 미치는 영향)

  • Kim, Yu-Shin;Lee, Hyung-Soon;Lee, Hyun-Jung;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.439-447
    • /
    • 2004
  • The purpose of this study was to investigate the influence of water, saliva and blood contamination on the bonding strength of metal brackets with a self-etching primer/adhesive to enamel. Ninety-six extracted human teeth were divided into four groups. The brackets were bonded to enamel with a self- etching primer (3M/Unitek Dental Products. Monorovia California) according to one of four protocols. The teeth were bonded in a dry condition (group D) or in contamination with distilled water (group W), artificial saliva (group S). or fresh human blood (group B) Shear bond strengths were tested using an Instron Universal testing machine. After debonding. bracket and tooth surfaces were examined with a stereomicroscope. In each group, four samples were selected and examined with a Scanning electron microscope of the prepared enamel surface and resin-enamel interlace. The results obtained were summarized as follows: Shear bond Strength if group D $(15.22{\pm}2.86MPa)$ and W $(15.20{\pm}3.85 MPa)$ Were higher than in group B$(12.56{\pm}2.94MPa)$ (p<0.05). There were no statistical differences in the shear bond strengths between groups D. W and S (p>0.05). There was a tendency to have less residual adhesive remaining on the enamel surfaces of group B than group D. The SEW morphology of group D and W showed a more roughened etching pattern than group S and B. Water or saliva contamination on bending of orthodontic brackets with Transbond plus self etching primer had almost no influence on bond strength In this study, the blood contaminated group showed the lowest bond strength, but it was above the clinically acceptable bond strength (5.9-7.8 MPa, Reynold, 1975). The results of this study suggest that acceptable clinical bond strengths can be obtained in wet conditions when self-etching adhesives are used.

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

A Comparison Study on the Sterilization Effect of Ballast Water with Cylinder Type and Groove Type (선박평형수 처리장치의 cylinder type과 groove type의 살균효과 비교 연구)

  • Kang, Ah-Young;Kim, Sang-Pil;Kim, Young-Cheol;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • Current ballast water treatment technologies are applying chemical or electrical treatment technology which are not free from secondary environmental pollution. The purpose of this study is to treat the ballast water by shear stress without an additional environmental pollution and to find out the optimal treatment apparatus. We tried to treat ballast water by applying shear stress with two different type of combination of inner and outer cylinder, such as non-pattern type and groove type. In the case of non-pattern type of inner and outer cylinder, sterilization effect was comparatively low because of a slip between inner and outer cylinder. But in the case of groove type of inner and outer cylinder, sterilization effect was superior to the non-pattern type. With a same revolutional speed of 8000rpm, an extinction effect was acquired in the gap of 1 mm of inner and outer cylinder at non-pattern type, but 3mm of that of groove type.