• Title/Summary/Keyword: 전단성능

Search Result 1,121, Processing Time 0.029 seconds

The Structural Behavior and Performance by Span-to-Depth Ratio in Composite Structure of Sandwish System (셀 형상비에 따른 강.콘크리트 복합구조체의 구조적 거동 및 성능)

  • 정연주;정광회;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.181-192
    • /
    • 2001
  • 이 논문은 샌드위치식 강-콘크리트 복합구조체에서 상하 강판과 격벽으로 구성되는 셀의 형상비가 거동과 성능에 미치는 영향을 다루었다. 이 구조체에서 셀 형상비는 하중전달 메카니즘과 하중분배능력을 변화시킨다. 따라서 셀 형상비에 따라 부재의 응력수준과 하중저항능력이 변화한다. 이 연구에서는 셀 형상비가 이 구조체의 거동과 성능에 미치는 영향을 규명하기 위해, 두 종류의 샌드위치식 복합구조체에 대해 다양한 셀 형상비를 설정하여 비선형 구조해석을 수행하였다. 해석결과로부터 셀 형상비에 따른 하중전달 메카니즘과 부채 응력에서의 차이점을 도출하였으며, 이들 차이점을 바탕으로 셀 형상비가 전단성능, 휨성능, 하중저항성능에 미치는 영향을 분석하였고, 파괴모드와 연성에 미치는 영향에 대해서도 간략히 언급하였다. 연구결과, 셀 형상비가 증가함에 따라 하부 강판과 콘크리트의 응력수준이 낮아지는 결과를 나타내었다. 이것은 각 부재의 유효휨강성과 유효전단강성 증가를 나타내며, 따라서 구조체의 하중저항성능도 향상되는 것으로 판단된다. 특히 셀 형상비의 증가에 따른 성능향상에서 전단성능이 휨성능에 비해 더 큰 효과를 나타내며, 이러한 차이는 파괴모드와 연성에도 영향을 미칠 것으로 판단된다. 즉, 셀 형상비가 증가함에 따라 구조물의 거동 및 파괴모드는 점차적으로 전단에서 휨으로 변화하고, 이에 따라 구조물의 연성도 점차적으로 향상될 것으로 판단된다.

  • PDF

Experimental Study on the Shear Strength of Form Tie Connector Linked by Stud Coupler (스터드 커플러로 연결된 폼타이 연결재의 전단내력에 관한 실험 연구)

  • Seo, Soo-Yeon;Kim, Seoung-Soo;Yoon, Yong-Dae;Ha, Gee-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.573-581
    • /
    • 2008
  • In general, conventional sheeting H-pile is often used as a temporary member installed upon construction of outer retaining wall at basement floor. In CBW (composite basement wall), R/C basement wall is combined with H-Pile and resists lateral soil pressure together. This paper presents an experimental results of push out shear test of CBW with stud coupler as shear connectors to combine H-Pile with R/C wall six specimens with different diameter of FT (form tie) and arrangement of shear connectors were tested to evaluate the shear capacity of the composite wall. Test results showed that shear strength increased with diameter of FT. The shear strength of shear connector in CBW could be suitably predicted by using the previous equations codified in the codes. Best correlation, especially, was found when the calculation result by the formula in AISC 360-05 was compared to test one.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

Seismic Performance of PC Moment Frame with Plastic Shear Hinge (소성전단힌지를 갖는 PC 모멘트 골조의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2015
  • Cyclic loading tests for the PC moment frame with plastic shear hinges were performed to evaluate the seismic performance. The plastic shear hinges consisted of two steel plates were installed at the mid-length of the beam to connect the PC frames. Three shear links are existed in each steel plate. The three shear links were designed using shear force corresponding to the shear capacity of 50%, 75%, and 100% of the beam shear capacity. The proposed connections showed an efficient energy dissipation capacity and good structural performance. As a result, it is reasonable to design the plastic shear hinges using design shear capacity less than 100% of the beam shear capacity.

Evaluation of Design Method and Shear Transfer Capacity on the Horizontal Interface of PC Composite Beams (PC 합성보의 수평접합면 전단력 전달성능 평가 및 설계법 분석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2013
  • The purpose of this study is to evaluate the horizontal shear strength on the interface between PC and cast-in-place concrete for PC composite beams. Six specimens were tested to examine the structural performance of the horizontal interface with different surface condition and stirrup detailing. Except for SF-291B specimen failed in flexural compression, strengths and deformation capacities of five specimens were determined by horizontal shear failure. Horizontal shear strengths by composite horizontal shear or shear friction in current codes could be used to predict the horizontal shear capacity of the interface for specimens. Also detailing for stirrup by PCI design provision could be used to accomplish the composite action in the interface.

Hysteretic Behavior of Slab-Column Joint Using Bended Type Shear Reinforcement (절곡형 전단보강근을 사용한 슬래브-기둥 접합부의 이력 거동)

  • Lee, Hyun-Ho;Lee, Do-Bum;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2006
  • From the development of residential flat plate system, continuously bended shear reinforcement is developed for the prevention of punching shear. To know the punching shear capacity of developed shear reinforcement in slab-column joint, structural test is performed. The testing parameters are shear reinforcement types, such as no reinforcement, bended shear reinforcement, and head stud reinforcement. To verify the lateral capacity, cyclic load is applied under the constant vertical load condition. The results of tests are compared to as global displacement, slab-column joint strength. From the test results, the resisting capacity of developed shear reinforcement system has a good performance in the story drift ratio.

Strain-Based Shear Strength Model for Prestressed Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.