DOI QR코드

DOI QR Code

Strain-Based Shear Strength Model for Prestressed Beams

프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델

  • Published : 2009.02.28

Abstract

An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

이전 연구에서 제안된 변형률 기반 전단강도모델에 근거하여, 프리스트레스트 콘크리트 보의 전단강도를 예측하기 위한 해석모델을 제안하였다. 전단보강 되지 않은 콘크리트 보에서는 일반적으로 인장대보다 콘크리트 압축대가 주로 전단력에 저항한다. 콘크리트의 전단성능은 콘크리트의 재료 파괴기준을 통해 정의된다. 압축대의 전단성능은 단면에 작용하는 수직응력과의 상관관계를 고려하여, 경사 파괴면을 따라서 산정된다. 압축대의 수직응력 분포는 부재의 휨변형에 따라 변화하므로, 압축대 단면의 전단성능은 휨변형에 대한 함수이다. 보의 전단강도는 전단성능 곡선과 전단수요 곡선의 교점에서 결정된다. 제안된 해석모델을 기존 연구자들의 실험 연구 결과와 비교한 결과, 실험체의 전단강도를 정확하게 예측하였다.

Keywords

References

  1. Sozen, M. A., Zwoyer, E. M., and Siess, C. P., “Investigation of Prestressed Concrete for Highway Bridge, Part1-Strength in Shear of Beams without Web Reinforcement,” Engineering Experiment Station Bulletin, No. 452, University of Illinois, Urbana, 1959, 69 pp.
  2. Kar, J. N., “Diagonal Cracking in Prestressed Concrete Beams,” Proceedings, ASCE, Vol. 94, ASCE 1968, pp. 83-109.
  3. Vecchio, F. J. and Collins, M. P., “The Modified Compression-Field Theory for Reinforced Concrete Elements Subject to Shear,”ACI Journal, Proceedings, Vol. 83, No. 2, 1986, pp. 219-231.
  4. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Farmington Hills, MI, 2005, 430 pp.
  5. Eurocode 2, “Design of Concrete Structures-Part1-1:General Rules and Rules for Buildings,”CEN, EN 1992-1-1, Brussels, Belgium, 2004, 225 pp.
  6. Baznt, Z. P. and Cao, Z., “Size Effect of Shear Failure in Prestressed Concrete Beams,”ACI Journal, Proceedings, Vol. 83, No. 2, 1986, pp. 260-268.
  7. Wolf, T. S. and Frosch R. J., “Shear Design of Prestressed Concrete:A Unified Approach,”Journal of Structural Engineering, ASCE, Vol. 133, No. 11, 2007, pp. 1512-1519. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1512)
  8. Park, H. G., Choi, K. K., and Wight, J. K., “Strain-Based Shear Strength Model for Slender Beams without Web Reinforcement,”ACI Structural Journal, Vol. 103, No. 6, 2006, pp. 783-793.
  9. Choi, K. K., Park, H. G., and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete beams-Part:Development,” ACI Structural Journal, Vol. 104, No. 2, 2007, pp. 142-152.
  10. Zararis, P. D. and Papadakis, G. C., “Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement,” Journal of Structural Engineering, ASCE, Vol. 127, No. 7, 2001, pp. 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  11. Tureyen, A. K. and Frosch, R. J., “Concrete Shear Strength:Another Perspective,”ACI Structural Journal, Vol. 100, No. 5, 2003, pp. 609-615.
  12. Chen, W. F., Plasticity in Reinforced Concrete, McGraw - Hill, New York, 1982, 474 pp.
  13. Kupfer, H., Hilsdorf, H. K., and Rusch, H., “Behavior of Concrete Under Biaxial Stresses,”ACI Journal, Proceedings, Vol. 66, No. 8, 1969, pp. 656-666.
  14. Choi, K. K., Reda Taha, M. M., Park, H. G., and Maji, A.K. “Punching Shear Strength of Interior Concrete Slab-Column Connections Reinforced with Steel Fibers,”Cement and Concrete Composites, Vol. 29, No. 5, 2007, pp. 409-420. https://doi.org/10.1016/j.cemconcomp.2006.12.003
  15. MacGregor, J. G., Strength and Behavior of Prestressed Concrete Beams with Web Reinforcement, PhD thesis, Dept. of Civil Engrg. University of Illinois, 1960, 295 pp.