• Title/Summary/Keyword: 전기 자동차 배터리

Search Result 351, Processing Time 0.029 seconds

A Study on Electric Vehicle Composite Material Frame Battery Case Using Collision Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 배터리 케이스에 관한 연구)

  • Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Collision analysis involving a vehicle frame that includes a battery and a battery case was performed using a carbon fiber composite material (CFRP) and a glass fiber-reinforced plastic (GFRP), which are lightweight materials. Three types of collisions were analyzed: frontal collisions, partial frontal collisions, and side collisions. The maximum stress and deformation levels were measured for each case. To evaluate the stability of ignition and explosion potential of the battery, the maximum stress of the frame was measured before measuring the direct stress to confirm whether the collision energy was sufficiently absorbed. The deformation level of the battery case was measured to confirm whether the battery case affects the battery directly.

A Survey on Measurement and Estimation Methods for State of Health of EV Lithium-ion Batteries (전기 자동차 리튬-이온 배터리 SOH 측정 및 추정 방법에 대한 조사연구)

  • Koog-Hwan Oh;Hyun-Chang Cho
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.462-469
    • /
    • 2023
  • Electric vehicles (EVs) have recently been in the spotlight and have been rapidly developed to reduce the carbon emission with respect to the transport sector. Most EVs currently employ lithium-ion batteries (LIBs) as power sources because they have a higher energy density and a lower self-discharge than other batteries. However, the LIBs cannot respond to high power demands when the state of health (SOH) falls below 80%. Therefore, the SOH of the LIBs must be accurately measured or estimated. To date, many methods have been studied and proposed for measuring or estimating the SOH. In this paper, representative methods among them are reclassified and introduced.

Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System (통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발)

  • MINWOO AN;DAEIL HYUN;JAEYOUNG HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.230-239
    • /
    • 2024
  • Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine (레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발)

  • Ham, Yun-Young;Lee, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.529-535
    • /
    • 2018
  • The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.

EV Energy Convergence Plan for Reshaping the European Automobile Industry According to the Green Deal Policy (그린딜 정책에 따른 유럽자동차 산업재편의 EV 에너지 융합방안)

  • Seo, Dae-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.40-48
    • /
    • 2021
  • The paper dealt with the fact that the green deal took place when the demand for electrical energy surged. However, the procurement of electric vehicles and much of the electric energy of the future still depends on fossil fuels. Accordingly, the importance of the IT industry is highlighted, and the demand for hydrogen-electric vehicles and related industries increases. The method of this study investigated the relevance of EV charging as a future next-generation power source rather than the electric energy demand of the IT industry. This study derives the correlation between industrial electricity and household energy PPP according to economic growth through empirical regression analysis. As the result, it was found that the amount of change, including electric and next-generation electric vehicles, was significant for on thirds of the countries in the change in purchasing power compared to GDP. This affects overall purchasing power as twelve out of thirty two countries with EV demand (Italy, Canada, Switzerland, Poland, Slovenia, Germany, Slovakia, Finland, Sweden, Czech Republic, Estonia, Denmark) are more sensitive to electric energy. This is related to the charging of EVs or hydrogen as the next-generation power of the future rather than the electric energy demand of the IT industry. By preventing waste of unused electricity of IT-electric energy sources and charging-preserving hydrogen electricity, it seems indispensable to prepare for the national IT power conservation buffer facility for supply and demand in future growth.

Prediction of Demand for Photovoltaic Power Plants for Electric Vehicle Operation (전기자동차 운행을 위한 태양광발전소 수요 예측)

  • Choi, Hoi-Kyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.35-44
    • /
    • 2020
  • Currently, various policies regarding ecofriendly vehicles are being proposed to reduce carbon emissions. In this study, the required areas for charging electric vehicle (EV) batteries using electricity produced by photovoltaic (PV) power plants were estimated. First, approximately 2.4 million battery EVs, which represented 10% of the total number of vehicles, consume approximately 404 GWh. Second, the power required for charging batteries is approximately 0.3 GW, and the site area of the PV power plant is 4.62 ㎢, which accounts for 0.005% of the national territory. Third, from the available sites of buildings based on the region, Jeju alone consumes approximately 0.2%, while the rest of the region requires approximately 0.1%. Fourth, Seoul, which has the smallest available area of mountains and farmlands, utilizes 0.34% of the site for PV power plants, while the other parts of the region use less than 0.1%. The results of this study confirmed that the area of the PV power plant site for producing battery-charging power generated through the supply of EVs is very small. Therefore, it is desirable to analyze and implement more specific plans, such as efficient land use, forest damage minimization, and safe maintenance, to expand renewable energy, including PV power.

Development of the High Power Battery Charging System for Portable Energy Banks (이동식 에너지 뱅크용 대용량 배터리 충전 시스템의 개발)

  • Kim, Soo-Yeon;Kim, Dong-Ok;Lee, Jung-Hwan;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.491-499
    • /
    • 2021
  • Batteries are widely used for energy storage, such as ESS(Energy Storage System), electric vehicles, electric aircraft, and electric powered ships. Among them, a submarine uses a high power battery for an energy storage. When the battery of a submarine is discharged, a diesel generator generates AC power, and then AC/DC power converter change AC power to DC power for charging the battery. Therefore, in order to lower the current capacity of the diesel generator, it is necessary to use an AC/DC converter with a high input power factor. And, a power converter with a large power capacity must have high stability because it can lead to a major accident when a failure occurs. However, the control algorithm using the traditional PI controller is difficult to satisfy stability and dynamic characteristics. In this paper, we design the high power AC/DC converter with high input power factor for battery charging systems. And, we propose a stable control algorithm. The validity of the proposed method is verified through simulation and experiments.

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations (산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Overload Analysis of Distribution Systems make use of PEVs Charging Modeling (전기 자동차의 충전 모델링을 이용한 배전계통 과부하 분석)

  • Choi, Sang-Bong;Lee, Jae-Jo;Sung, Back-Sub
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.74-85
    • /
    • 2020
  • This paper presents an algorithm that evaluated the overload influence by bus upon the distribution system by calculating the daily load curve of PEVs charging by bus based on the daily charging patterns of PEVs according to PEVs penetration scenarios. The proposed algorithm calculates the number of PEVs to estimate the number of households by bus; the probability density function of the charging start time of PEVs, considering driving characteristics of PEVs and the daily load curve of PEVs charging by bus considering battery characteristics according to PEVs penetration scenarios. To verify the evaluation of the overload influence by bus on the distribution system in terms of the proposed algorithm, the cases were reviewed on the target bus(apartment and detached houses) among the feeders of the distribution systems at Dongtan new-town in Korea.