Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.2.147

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations  

Shin, Dong-Ho (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.21, no.2, 2022 , pp. 147-157 More about this Journal
Abstract
Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.
Keywords
Electric vehicles; Battery housing; 6061-T6 Aluminum alloy; Chloride concentrations; Electrochemical characteristics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. E. Graedel, Corrosion Mechanisms for Aluminum Exposed to the Atmosphere, Journal of The Electrochemical Society, 136, 204C (1989). Doi: https://doi.org/10.1149/1.2096869   DOI
2 D. D. Macdonald, The Point Defect Model for the Passive State, Journal of The Electrochemical Society, 139, 3434 (1992). Doi: https://doi.org/10.1149/1.2069096   DOI
3 D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 267 - 273, Prentice Hall, New Jersey (1996).
4 Z. S. Smialowska, Pitting corrosion of aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8   DOI
5 K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249, (2020). Doi: https://doi.org/10.3390/cmd1020012   DOI
6 I. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Dependence on Temperature, pH, and Cl? in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6, Electrochimica Acta, 199, 242 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.03.125   DOI
7 A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711   DOI
8 B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1814 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.00   DOI
9 ASTM G46-94, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p.3, ASTM International, West Conshohocken, PA, (2004).
10 X. Zhang, S. L. Russo, S. Zandolin, A. Miotello, E. Cattaruzzza, P. L. Bonora, and L. Benedetti, The pitting behavior of Al-3103 implanted with molybdenum, Corrosion Science, 43, 85 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00058-5   DOI
11 T. P. Hoar and W. .R Jacob, Breakdown of Passivity of Stainless Steel by Halide Ions, Nature, 216, 1299 (1967). Doi: https://doi.org/10.1038/2161299a0   DOI
12 X. Zhang, M. Liu, F. Lu, M. Liu, Z. Sun, and Z. Tang, Atmospheric corrosion 7B04 aluminum alloy in marine environments, Corrosion Science and Technology, 17, 6, (2018). Doi: https://doi.org/10.14773/cst.2018.17.1.6   DOI
13 A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711   DOI
14 S. Arora, W. Shen, and A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews, 60, 1319 (2016). Doi: https://doi.org/10.1016/j.rser.2016.03.013   DOI
15 A. Kampker, G. Bergweiler, F. Fiedler, and A. Hollah, Battery Pack Housing for Electric Vehicles Made by Laser Beam Welding, ATZ Worldwide, 121, 72 (2019). Doi: https://doi.org/10.1007/s38311-019-0058-7   DOI
16 F. Fiedler, G. Bergweiler, and A. Kampker, Laser Welding Process Development for Jigless Joining of a Low-Cost Battery Pack Housing, Proc. 72ndIIW Annual Assembly and International Conference (2019). https://www.researchgate.net/publication/338839202
17 S. W. Kang, J. W. Kim, Y. J. Jang, and K. J. Lee, Welding Deformation Analysis, Using an Inherent Strain Method for Friction Stir Welded Electric Vehicle Aluminum Battery Housing, Considering Productivity, Applied Sciences, 9, 3848 (2019). Doi: https://doi.org/10.3390/app9183848   DOI
18 C. Vargel, Corrosion of Aluminum, 1st, p.12, ELSEVIER, (2004).
19 Z. Qin and H. Xu, Effect of Surface State on Acid Rain Corrosion Resistance of T6 6005A Aluminum Alloy by BT-FSW Joint, IOP Conference Series : Materials Science and Engineering, 727, 012003 (2020). Doi: https://doi.org/10.1088/1757-899X/727/1/012003   DOI
20 A. K. Sfikas and A. G. Lekatou, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and materials degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012   DOI
21 S. L. H. Quaireau, M. Laot, K. Colas, B. Kapusta, S. Delpech, and D. Gosset, Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers, Journal of Alloys and Compounds, 833, 155146 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.155146   DOI
22 X. K. Yang, L. W. Zhang, S. Y. Zhang, M. Liu, K. Zhou, and X. L. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Materials and Corrosion, 68, 529 (2017). Doi: https://doi.org/10.1002/maco.201609201   DOI
23 S. Ono, T. Makino, and R. S. Alwitt, Crystallographic Pit Growth on Aluminum (100), Journal of The Electrochemical Society, 152, B39 (2005). Doi: https://doi.org/10.1149/1.1839471   DOI
24 S. J. Kim, E. H. Hwang, I. C. Park, and S. J. Kim, Electrochemical corrosion damage characteristics of aluminum alloy materials for marine environment, Journal of Korean Institute Surface Engineering, 6, 421, (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.421   DOI
25 J. H. Kim, Acid Rain, p. 47, SNU Press (2007).
26 M. A. Arshadi, J. B. Johnson, and G. C. Wood, The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, Corrosion Science, 23, 763 (1983). Doi: https://doi.org/10.1016/0010-938X(83)90039-227.   DOI
27 G. Schuh, G. Bergwei, F. Fiedler, and M. Koltermann, Flexible Production Concept of a Low-Cost Battery Pack Housing for Electric Vehicles, 53rd CIRP Conference on Manufacturing Systems, 93, 137 (2020). Doi: https://doi.org/10.1115/FuelCell2014-6641   DOI
28 J. Baumeister, J. Weise, E. Hirtz, K. Hohne, and J. Hohe, Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles, Procedia Materials Science, 4, 317 (2014). Doi: https://doi.org/10.1016/j.mspro.2014.07.565   DOI
29 B. G. Pollet, I. Staffell, and J. L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochemica Acta, 84, 235 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.03.172   DOI
30 A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809, (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q   DOI
31 Y. J. Yang and S. J. Kim, Electrochemical characteristics of aluminum alloys in sea water for marine environement, Acta Physica Polonica A, 135, 1005 (2019).   DOI
32 M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712, (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076   DOI
33 R. T. Foley, The localized corrosion of aluminum alloys -A Review, Corrosion, 42, 277 (1986).   DOI
34 P. Leblanc and G. S. Frankel, A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy, Journal of The Electrochemical Society, 149, B239 (2002).   DOI