DOI QR코드

DOI QR Code

Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System

통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발

  • MINWOO AN (Department of Mechanical Engineering, Kongju National University) ;
  • DAEIL HYUN (Department of Future Convergence Engineering, Kongju National University) ;
  • JAEYOUNG HAN (Department of Future Automotive Engineering, Kongju National University)
  • 안민우 (국립공주대학교 기계공학과) ;
  • 현대일 (국립공주대학교 미래융합공학과) ;
  • 한재영 (국립공주대학교 미래자동차공학과)
  • Received : 2024.03.06
  • Accepted : 2024.04.23
  • Published : 2024.04.30

Abstract

Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

Keywords

Acknowledgement

본 과제(결과물)는 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과임(2021RIS-004). 본 연구는 산업통상자원부(MOTIE) 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(00144016).

References

  1. International Maritime Organization (IMO), "Nitrogen oxides (NOx) - regulation 13", IMO, 2016. Retrieved from https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx.
  2. S. Y. Kang, W. Ryu, C. W. Bae, and J. K. Kim, "Analysis and the standardization plan of the terms used by seafarers on small vessel", Journal of the Korean Society of Marine Environment & Safety, Vol. 25, No. 7, 2019, pp. 867-873, doi: https://doi.org/10.7837/kosomes.2019.25.7.867.
  3. M. N. Boukoberine, Z. Zhou, and M. Benbouzid, "A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects", Applied Energy, Vol. 255, 2019, pp. 113823, doi: https://doi.org/10.1016/j.apenergy.2019.113823.
  4. S. Cho, M. Kim, Y. Son, and T. Yang, "Research trend and analysis of altitude and endurance for fuel cell unmanned aerial vehicles", Journal of Hydrogen and New Energy, Vol. 25, No. 4, 2014, pp. 393-404, doi: https://doi.org/10.7316/KHNES.2014.25.4.393.
  5. M. Kim and C. Oh, "How long will the golden age of the disel engine last for propulsion and power generation in ships", Journal of the Korean Marine Engineering Society's academic conference, 2006, pp. 273-274. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00803449.
  6. B. Lee, S. Kwon, P. Park, and K. Kim, "Active power manage-ment system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries", IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 4, 2014, pp. 31 67-3177, doi: https://doi.org/10.1109/TAES.2014.130468.
  7. B. G. Gang, H. Kim, and S. Kwon, "Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles", Energy, Vol. 141, 20 17, pp. 1547-1554, doi: https://doi.org/10.1016/j.energy.2017.11.104.
  8. A. Payman, S. Pierfederici, and F. Meibody-Tabar, "Energy control of supercapacitor/fuel cell hybrid power source", Energy Conversion and Management, Vol. 49, No. 6, 2008, pp. 1637-1644, doi: https://doi.org/10.1016/j.enconman.2007.11.012.
  9. S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies", Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, 2012, pp. 981-989, doi: https://doi.org/10.1016/j.rser.2011.09.020.
  10. A. M. Bassam, A. B. Phillips, S. R. Turnock, and P. A. Wilson, "Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship", International Journal of Hydrogen Energy, Vol. 42, No. 1, 2017, pp. 623-635, doi: https://doi.org/10.1016/j.ijhydene.2016.08.209.
  11. H. K. Yang, "A study on the fuel cell based small ship propulsion system [Doctoral dissertation]", Busan: Korea Maritime & Ocean University; 2016.
  12. M.Cavo, M. Rivarolo, L. Gini, and L. Magistri, "An advanced control method for fuel cells - metal hydrides thermal management on the first Italian hydrogen propulsion ship", International Journal of Hydrogen Energy, Vol. 48, No. 54, 2023, pp. 20923-20934, doi: https://doi.org/10.1016/j.ijhydene.2022.07.223.
  13. L. Xing, W. Xiang, R. Zhu, and Z. Tu, "Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle", International Journal of Hydrogen Energy, Vol. 47, No. 3, 2022, pp. 1888-1900, doi: https://doi.org/10.1016/j.ijhydene.2021.10.146.
  14. I. S. Han, J. Jeong, B. K. Kho, C. H. Choi, S. Yu, and H. K. Shin, "Development of a 25 kW-class PEM fuel cell system for the propulsion of a leisure boat", Journal of Hydrogen and New Energy, Vol. 25, No. 3, 2014, pp. 271-279, doi: https://doi.org/10.7316/KHNES.2014.25.3.271.
  15. M. Daowd, N. Omar, B. Verbrugge, P. Van Den Bossche, and J. Van Mierlo, "Battery, hybrid and fuel cell electric vehicle symposium & exhibition battery models parameter estimation based on Matlab/Simulink®", Proceedings of the 25th Electric Vehicle Symposium, 2010. Retrieved from https://www.academia.edu/2672707/Battery_Models_Parameter_Estimation_based_on_MATLAB_Simulink_.
  16. R. K. Shah and D. P. Sekulic, "Fundamentals of heat exchanger design", John Wiley & Sons, USA, 2003.
  17. Y. A. Cengel and A. J. Ghajar, "Heat and mass transfer: fundamentals & applications", 6th ed, McGraw-Hill Education, USA, 2020.
  18. K. Kurata and K. Oda, "Ship waves in shallow water and their effects on moored small vessel", Coastal Engineering, 1984, doi: https://doi.org/10.1061/9780872624382.219.
  19. A. F, Mollanf, S. R. Turnock, and D. A. Hudson, "Ship resistance and propulsion: practical estimation of ship propulsive power", 2nd ed, Cambridge University Press, UK, 2017.