• Title/Summary/Keyword: 적층판 물성

Search Result 51, Processing Time 0.026 seconds

Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites (섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구)

  • 이상효;이장우
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • To improve the mechanical properties of fiber-reinforced polymer matrix composites, laminated composites plates were fabricated using different matrix resins and glass or aramid fibers. The effect of matrix resin system were evaluated by tensile, flexural strength measurements. In the case of surface treated aramid fiber and unsaturated polyester resin composite, maximum flexural properties were observed in the composite prepared from the glass fiber treated with 0.5 wt% silane coupling agents. Vinylester resin composites show the highest tensile properties and isophthalic polyester composites have the highest flexural properties among the unsaturated polyester resin composites studied. The relationship between overlap laminated composites plates and mechanical properties of polymer composites is also investigated in order to improve mechanical properties of glass fiber and unsaturated polyester resin composites.

  • PDF

A Study on the Evaluation of the Failure for Carbody Structures made of Laminated Fiber-Reinforced Composite Materials Using Total Laminate Approach (전체 적층판 접근법을 이용한 섬유강화 적층 복합재 차체 구조물의 파손평가 연구)

  • 신광복;구동회
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.18-28
    • /
    • 2004
  • In order to evaluate the strength of carbody structures of railway rolling stock made of laminated fiber-reinforced composite materials, total laminate approach was introduced. Structural analyses were conducted to check the basic design of hybrid composite carbody structures of the Korean Tilting Train eXpress(TTX) with the service speed of 180km/h. The mechanical tests were also conducted to obtain strengths of composite laminates. The results show that all stress components of composite carbody structures are inside of failure envelopes and total laminate approach is recommended to predict the failure of hybrid composite carbody structures at the stage of the basic design.

Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation (탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명)

  • 김주식;윤광준
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • The change of the coefficients of thermal expansion(CTE) of Carbon/Epoxy was investigated for the temperature variation and a prediction model for the change of CTE was proposed. Elastic properties and CTEs in the principal material directions were measured in the range of room temperature to cure temperature and characterized as functions of temperature. By applying the characterized properties to the classical lamination theory, a computational method to predict the change of CTEs of a general laminate for temperature variation was proposed. the coefficients of thermal expansion of laminates with various stacking sequences were measured and compared with those predicted. Good agreements between the predicted results and the experimental data show that the c hanges of CTEs of a general laminate for temperature variation can be predicted well by using the proposed method.

  • PDF

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.

Comparative Study on Low-velocity Impact Behavior of Graphite/Epoxy Composite laminate and Steel Plate (탄소/에폭시 복합재 적층판과 강판의 저속충격 거동에 관한 비교 연구)

  • Kong, Chang-Duk;Kim, Yeong-Gwang;Lee, Seung-Hyeon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This study was performed to make a comparison on low-velocity impact behavior between graphite/epoxy composite laminate and steel plate. In order to validate the proposed scheme fur the impact behavior of the plate, the Karas's impact model was used. The impact models for this comparative study are the graphite/epoxy composite plate having $[0/90/45/-45/-45/45/90/0]_{8S}$ laminate sequence and the steel plate with a steel ball impactor. The low-velocity impact behaviors for two types of plates were comparatively investigated and performed by considering different impactor velocities and weights respectively. In this investigation, it was found that the composite laminate has impact energy absorption effect due to more flexible behavior than the steel plate, and also it has better characteristics on impact damage and weight.

Determination of Material Properties of Gfrp Snap-Fit Deck by Laminate Analysis and Coupon Tests (적층해석 및 시편시험을 통한 착탈결합식 복합소재 데크의 물성치 추정)

  • Hong, Kee-Jeung;Park, Jin-Woo;Lee, Sung-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.276-279
    • /
    • 2010
  • 유리섬유 복합소재 바닥판은 고강도, 경량 그리고 고내구성을 가지고 있으므로, 현재 국내 및 해외에서 교량에 꾸준히 적용되고 있다. 국내외에서 기존에 사용하고 있는 복합소재 데크는 주로 수평방향의 암수접착을 통한 결합을 실시하고 있으나 본 연구진에 의해 획기적인 착탈결합방식 연결이 가능한 복합소재데크를 개발하였다. 복합소재 적층설계를 통해 설계된 복합소재 데크의 물성치를 ESAComp에 의한 적층해석과 시편시험을 통해 추정하였다.

  • PDF

A Study on the Failure Characteristics of Equivalent Anisotropic Composite Plates (등가 이방성 복합재 평판에 대한 파손 특성에 관한 연구)

  • Yun, Jaeho;Kim, Hanjun;Kim, Yongha
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.35-42
    • /
    • 2022
  • This paper deals with predicting comparable mechanical properties of laminated composite plates. The stiffness of an equivalent anisotropic composite plate is derived based on classical lamination theory. A novel failure criterion is defined to describe the failure behaviour of laminated composite plates based on micro-mechanics failure criteria. Finally, the theory's validation of finite element analysis results was verified. We concluded that this theory is very suitable for failure analysis of laminated composite plates for aerospace applications due to their relative simplicity and computational efficiency.

Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences (적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • This paper presents a method to detect the fiber property variation of laminated GFRP plates from natural frequency response data. The combined finite element analysis using ABAQUS and the inverse algorithm described in this paper may allow us not only to detect the deteriorated elements from the mirco-mechanical point of view but also to find their numbers, locations, and the extent of damage. To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. Several numerical results show that the proposed system is computationally efficient in identifying fiber stiffness degradation for complex structures such as composites with various layup sequences.

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

Determination of Degraded Fiber Properties of Laminated CFRP Flat Plates Using the Bivariate Gaussian Distribution Function (이변량 Gaussian 분포함수를 적용한 CFRP 적층 평판의 보강섬유 물성저하 규명)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.299-305
    • /
    • 2016
  • This paper presents a method to detect the fiber property variation of laminated CFRP plates using the bivariate Gaussian distribution function. Five unknown parameters are considered to determine the fiber damage distribution, which is a modified form of the bivariate Gaussian distribution function. To solve the inverse problem using the combined computational method, this study uses several natural frequencies and mode shapes in a structure as the measured data. The numerical examples show that the proposed technique is a feasible and practical method which can prove the location of a damaged region as well as inspect the distribution of deteriorated stiffness of CFRP plates for different fiber angles and layup sequences.