• Title/Summary/Keyword: 적층성

Search Result 1,124, Processing Time 0.028 seconds

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

Convergence Study on Damage and Static Fracture Characteristic of the Bonded CFRP structure with Laminate angle (적층 각도를 가진 CFRP 접착 구조물의 파손 및 정적 파괴 특성에 관한 융합 연구)

  • Lee, Jung-Ho;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.155-161
    • /
    • 2019
  • As composite is the light weight material whose durability and mechanical property are more superior than the existing general material. By taking notice of the composite with light weight, this study was about to investigate the static fracture characteristic of the bonded CFRP structure jointed with adhesive. Also, CFRP double cantilever beam with the variable of laminate angle was designed and the static fracture analysis was carried out. The laminate angles of CFRP double cantilever beam designed for this study were $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ individually. As the study result, the specimen with the laminate angle of $45^{\circ}$ was shown to have the durability better than those with the layer angles of $30^{\circ}$ and $45^{\circ}$. It was checked that the specimen with the laminate angle of $30^{\circ}$ had the weakest durability among all specimens. The damage data of the bonded CFRP structure by laminate angle could be secured through this study result. As the damage data of bonded interface obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Free vibration analysis of clamped-free laminated orthotropic circular cylindrical shells (적층직교이방성 외팔 왼통 의 자유진동 해석)

  • 이영신;문홍기;윤종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.929-936
    • /
    • 1986
  • Free vibration characteristics of laminated orthotropic circular cylindrical shells with clamped free boundary condition are investigated. The solution is obtained through a direct solution procedure with axial mode displacements represented as simple Fourier series expressions. On the basis of the thin shell theories of Sanders, Love, Loo, Morley and Donnell, the 4*$ frequency determinant is derived and is expressed in a unified form. Various numerical examples determining the natural frequencies of circular cylindrical shells with isotropic material and also with layers of orthotropic elastic material arbitraily laminated either symmetrically or anti-symmetrically about the shell middle surface. The results obtained compared very well with some available experimental and numerical results.

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

Tack Property Changes with the Storage of Textile Prepreg I (섬유 프리프레그의 저장에 따른 Tack성 변화 I)

  • Hong, Tae-Min;Won, Jong-Sung;Lee, Jung-Soon;Cho, Dae-Hyun;Lee, Seung-Goo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.74-74
    • /
    • 2012
  • 섬유 프리프레그(Prepreg)는 강화섬유를 수지에 함침하여 B-stage로 만든 복합재료의 중간성형재료이다. 최종적으로 프리프레그를 금형에 적층하여 가열 가압하여 수지를 경화함으로써 최종제품이 완성된다. 본 연구에서는 직물형 프리프레그를 사용하였는데, 사용되는 직물형태로는 복합재료 성형공정에서 형태안정성이 우수한 평직물과 능직물이 주로 사용된다. 직물형 프리프레그를 사용한 복합재료는 작업성과 형태안정성이 우수하면서 내충격특성이 우수하여 오토바이용 헬멧, 방탄용 헬멧 등에 주로 사용된다. 프리프레그에 요구되는 주요 특성중 하나는 Tack성으로서, 성형 과정에서 프리프레그를 여러 장 적층할 때 적층된 층 간에 미끄러지지 않으면서 잘 고정되어 적층 작업을 원활하게 하는 역할을 한다. Tack성은 수지의 B-stage 경화 후의 점성 거동에 따라 변화될 수 있는 것으로 표면의 끈끈함의 정도로서 알 수 있다. Tack성은 온도에 민감하여 측정 시에 일정한 온도의 유지가 중요하다. 이러한 온도에 대한 민감성 때문에 프리프레그의 저장시 저온에서 저장하는 것이 원칙인데, 상온에 있을 경우 시간경과에 따른 Tack성 변화가 크게 나타나게 된다. 따라서 본 연구에서는 아라미드 섬유와 열경화성수지를 이용하여 프리프레그를 제조하고 이를 상온상태에서 보관 시 일정시간 경과에 따른 Tack성 변화를 알아보고자 하였다.

  • PDF

Behaviors of Laminated Composite Folded Structures According to Ratio of Folded Length (곡절 길이비에 따른 복합적층 절판 구조물의 거동)

  • Yoo Yong-Min;Yhim Sung-Soon;Chang Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.223-231
    • /
    • 2006
  • This study deals with behavior characteristics of laminated composite folded structures according to ratio of folded length based on a higher-order shear deformation theory. Well-known mixed finite element method using Lagrangian and Hermite shape interpolation functions is a little complex and have some difficulties applying to a triangular element. However, a higher-order shear deformation theory using only Lagrangian shape interpolation functions avoids those problems. In this paper, a drilling degree of freedom is appended for more accurate analysis and computational simplicity of folded plates. There are ten degrees of freedom per node, and four nodes per element. Journal on folded plates for effects of length variations is not expressed. Many results in this study are carried out according to ratio of folded length. The rational design is possible through analyses of complex and unpredictable laminated composite folded structures.

A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method (열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구)

  • Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1229-1235
    • /
    • 2015
  • Scaffold fabrication technology using a 3D printer was developed for damaged bone tissue regeneration. A scaffold for bone tissue regeneration application should be biocompatible, biodegradable, and have an adequate mechanical strength. Moreover, the scaffold should have pores of satisfactory quantity and interconnection. In this study, we used the polymer deposition system (PDS) based on fused deposition modeling (FDM) to fabricate a 3D scaffold. The materials used were polycaprolactone (PCL) and alginic acid sodium salt (sodium alginate, SA). The salt-leaching method was used to fabricate dual pores on the 3D scaffold. The 3D scaffold with dual pores was observed using SEM-EDS (scanning electron microscope-energy dispersive spectroscopy) and evaluated through in-vitro tests using MG63 cells.

Determination of Elastic Work Factor of Graphite/Epoxy Composites Subjected to Compressive Loading under Hydrostatic Pressure Environment (정수압 환경에서 압축하중을 받는 Graphite/Epoxy 적층복합재의 탄성일인자 결정)

  • 신명근;이경엽;이중희
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.14-18
    • /
    • 2002
  • In the present study, we investigated the effects or hydrostatic pressure and stacking sequence on the elastic work factor to determine compressive fracture toughness of graphite/epoxy laminated composites in the hydrostatic pressure environment. The stacking sequences used were unidirectional. $\textrm{[}0^{\circ}\textrm{]}_{88}$ and multi-directional, $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}\textrm{]}_{88}$ case were 0.1 MPa, 70MPa, 140MPa. and 200MPa. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$ case were 0.1MPa, 100MPa, 200MPa, and 300MPa. It was found that the elastic work factor was not affected by the hydrostatic pressure and the stacking sequence. Also, it was found that the elastic work factor decreased in a linear fashion with delamination length.

The Lateral Earth Pressure Distribution of the Earth Retaining Structure Installed in Colluvial Soil (붕적토에 설치된 흙막이구조물의 측방토압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.433-437
    • /
    • 2008
  • It's essential to build an earth retaining structure at the beginning and end point of a tunnel constructed in a colluvium area. A large scale of colluvial soil may cause a problem to the stability of the excavation ground. An excavation in colluvium has different behavior characteristics from those in a sandy soil due to unstable elements and needs counter measures for it. There are few systematic research efforts on the behavior characteristics of an earth retaining structure installed in colluvial soil. Thus this study set out to collect measuring data from an excavation site at the tunnel pit mouth in colluvium and set quantitative criteria for the safety of an earth retaining structure. After comparing and analyzing the theoretical and empirical earth pressure from the measuring data, the lateral earth pressure distribution acted on the earth retaining wall was suggested.