DOI QR코드

DOI QR Code

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment

적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증

  • Received : 2018.04.30
  • Accepted : 2018.06.21
  • Published : 2018.07.01

Abstract

The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

우주용 냉각기는 관측위성의 적외선 검출기 초점면부의 극저온 냉각을 위해 적용되며, 궤도운용 시 단일 주파수 형태의 미소진동을 발생한다. 상기 미소진동은 관측위성의 영상품질을 저하시키는 주된 요인이며, 이에 따라 미소진동 절연이 요구된다. 본 연구에서는 상기 우주용 냉각기의 미소진동 절연을 목적으로 별도의 발사구속장치 적용 없이도 발사진동 및 궤도 미소진동환경에 동시적용 가능한 적층형 블레이드 진동절연기를 제안하였다. 본 진동절연기에 적용된 블레이드는 얇은 금속 박판을 다층으로 적층하고 각 층 상호면에 점탄성 특성 부여가 가능한 테이프를 적용하여 발사환경에서의 피로 내구성 향상 및 고댐핑 특성 부여를 목적하였다. 제안된 진동절연기의 기본특성 확인을 위해 자유감쇠 시험을 실시하였으며, 인증수준에서의 발사진동 시험을 통해 설계유효성을 입증하였다.

Keywords

References

  1. Kim, Y. G., Kim, H. B., Kim, E. H. and Kim, K. S., "Isolating vibration in miniature linear cryogenic cooler with tuned vibration absorber," Journal of Mechanical Science and Technology, Vol. 34, No. 5, 2010, pp. 605-609.
  2. Veprik, A. and Twitto, A., "Attenuation of cryocooler induced vibration in spaceborne infrared payloads," American Institute of Physics, Vol. 1573. No. 1, 2014, pp. 1784-1791.
  3. Ross, R. G., "Vibration suppression of advanced space cryocoolers - an overview," Presented at the International Society of Optical Engineering, Smart Structures and Materials Conference, California, Vol. 5052, 2003, pp. 1-12.
  4. Lee, M. J., Han, J. H. and Oh, H. U., "Verification of launch vibration and shock isolation performance for spaceborne compressor vibration isolator with SMA mesh washer," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 24, No. 7, 2014, pp. 517-524.
  5. Oh, H. U., Lee, K. J. and Jo, M. S., "A passive launch and on-orbit vibration isolation system for the spaceborne cryocooler," Aerospace Science and Technology, Vol. 28, No. 1 2013, pp. 324-331. https://doi.org/10.1016/j.ast.2012.11.013
  6. Oh, H. U., Kwon, S. C, and Youn, S. C., "Characteristics of spaceborne cooler passive vibration isolator by using a compressed shape memory alloy mesh washer," Smart Materials and Structures, Vol. 24, No. 1, 2014, pp. 1-11.
  7. Kwon, S. C., Jeon, Y. H. and Oh, H. U., "Micro-jitter attenuation of spaceborne cooler by using a blade-type hyperelastic shape memory alloy passive isolator," Cryogenics, Vol. 87, 2017, pp. 35-48. https://doi.org/10.1016/j.cryogenics.2017.08.011
  8. www.dupont.com
  9. www.3m.com
  10. European Cooperation for Space Standardization (ECSS-E-HB-32-26A), 2013.