감시, 인지, 보안 시스템으로부터 얻은 비디오 영상에서 원하는 객체를 탐지해 내는 것은 매우 중요하다. 객체 추출 방법은 여러 가지가 있지만 가장 많이 쓰이는 방법이 배경을 이용하는 방법이다. 이때 실외 환경에 설치된 카메라의 경우 날씨, 시간에 따른 태양의 밝기등과 영상 내의 객체의 변화 량에 따라서 효율적으로 적응할 수 배경 추출 알고리즘이 필요하다. 본 논문에서는 빠르고 정확하게 배경을 얻기 위한 기본적인 방법인 평균값과 최빈값을 이용한 방법을 혼합하여 영상의 변화 량에 따른 빠르고 정확한 배경을 추출하는 알고리즘을 제안하고자 한다.
기존의 감시 시스템이나 차량 검출 시스템은 제한되고 불안정한 조명환경에서는 객체들을 검출하기 어렵다. 본 논문에서는 불안정한 조명의 영향에 의한 문제점들을 해결하기 위해 참조 배경 영상의 적응적인 갱신 기법을 제안한다. 처음 입력영상을 참조 배경영상으로 설정하고 에지 성분에 따라 3가지 블록 크기로 나눈다. 그리고 각 블록의 밝기 변화량, 안정성, 색상 정보 그리고 에지 성분을 이용하는 블록상태 분석법이 적용된다. 참조 배경 영상에서 갱신된 블록과 같은 블록 상태를 갖는 인접하는 블록들을 하나의 블록으로 병합시킨다. 제안하는 기법은 움직이는 객체와 불안정한 조명을 구별할 수 있어 강인한 참조 배경 영상을 생성할 수 있다. 그리고 제안하는 블록 상태 분석법은 참조 배경 영상을 운영적인 측면과 시간적인 측면에서 매우 효율적으로 갱신시킨다. 본 논문은 제안하는 기법의 우수성을 입증하기 위해 조명이 빠르게 변화하는 도로 환경에서 제안하는 기법이 군집화를 통해 차량을 안정적으로 검출함을 보였다.
This paper proposes an adaptive background image generation method based on the frame difference for traffic monitoring. The performance of the conventional method is limited when there are more vehicles due to traffic Jam. To improve on this, we use frame differencing to separate vehicles from background in frame differencing, we adopt selective approach by using part of the image not considered as vehicle fer extraction of background. The proposed method generates background more efficiently than conventional methods even in the presence of heavy traffic.
본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.
본 논문에서는 지능형 감시 시스템을 위해 공간적 확률 분포와 방향 서술자를 이용하여 다양한 배회행위를 검출하는 방법을 제안한다. 적응적 배경 모델링 기법을 이용하여 움직이는 객체를 검출하고, 검출된 객체로부터 움직임의 정보를 추출한다. 추출된 객체의 움직임 정보는 이동 궤적과 방향에 대해 특징벡터를 생성한다. 생성된 특징벡터는 k-Nearest Neighbor를 통해 최종적으로 배회행위를 검출하게 된다. 제안한 방법을 실내외 다양한 환경에서 테스트하여 배회 행위를 검출하는 결과를 나타내었으며 이는 실시간으로 검출되는 것을 확인하였다.
본 논문에서는 관심영역 부호화를 위한 적응적인 관심영역 마스크 생성 방법을 제안한다. 제안한 방법은 사용자가 지정한 관심영역 정보를 이용하여 관심영역 마스크를 생성한다. 기존의 관심영역 부호화 방법에서는 모든 픽셀을 순차적으로 스캔하여 관심영역의 판별을 한 후에 관심영역 마스크를 생성하는 반면에, 제안한 방법은 관심영역 모양 특징을 기반으로 일부 픽셀만을 스캔하여 코드블록 단위의 관심영역의 판별을 한 후에 관심영역 마스크를 생성한다. 그리고 제안한 방법은 성능에 영향을 미치는 패턴 개수, 관심영역 임계값, 배경 임계값 매개변수를 제공한다. 제안한 방법의 유용성을 보이기 위해 기존의 방법들과 비교 실험한 결과, 제안한 방법이 기존의 방법에 비해 속도 면에 있어서 우수함을 확인하였다.
본 논문에서는 교차로 내에 위험의 원인이 되는 정지 객체를 검지하는 방법을 제안한다. 교차로 내에 설치된 CCTV에서 실시간 영상을 입력받아 객체의 크기를 일정하게 하기 위하여 역원근변환을 수행하였다. 원근변환된 영상에서 검지영역을 설정하고 객체의 이동 정보를 이용한 적응적인 배경영상을 생성하였다. 정지한 객체의 검출은 배경영상 차이법을 사용하여 정지한 객체의 후보 영역을 검출하였다. 검출된 후보 영역의 진위 여부를 파악하기 위하여 영상의 기울기 정보와 EHD(Edge Histogram Descriptor)를 이용하는 방법을 제안한다. 제안한 알고리즘의 성능을 알아보기 위하여 교차로에 설치된 DVR을 통해 출퇴근 시간 및 주간 대의 영상을 저장하여 실험하였다. 실험 결과 교차로 내의 검지영역 내에 정지한 차량을 효율적으로 감지할 수 있었으며 검지영역의 면적에 따라 초당 13~18프레임의 처리속도를 나타내어 실시간 처리에 문제가 없을 것으로 판단된다.
색상을 이용한 Mean-Shift 추적 알고리즘은 배경이 객체와 유사한 색상을 가질 때 객체 추적을 실패하는 문제가 있다. 본 논문은 색상 대신 새로운 조합 데이터 이용해 개선된 Mean-Shift 추적 알고리즘을 제안하고 있다. 새로운 데이터는 서로의 상관도가 낮은 색상과 채도의 적응적인 조합으로 생성된다. 즉, 제안된 알고리즘은 객체와 배경을 잘 구분되는 주 색요소와 그렇지 않은 부 색요소 선택하고, 주 색요소와 부 색요소의 상위 4 비트를 각각 조합 데이터의 상위 4비트와 하위 4 비트에 할당한다. 제안된 알고리즘은 배경이 객체와 유사한 색상을 갖는 추적 환경에서도 채도를 주 색요소로 선택함에 의해 추적 오차를 최대 2.0~4.2 화소, 평균 0.49~1.82 화소를 유지하면서 적절하게 객체를 추적한다.
본 연구에서는 의료 진단키트의 자동판독 시스템에서, 통제되지 않은 조명 환경에서도 정확한 색상 판별을 위한 ROI 영역 추출 기법과 조명 보정 기법을 고찰한다. 3단계로 세분된 ROI 추출 과정은 조명변화에 적응적인 배경영상 정보를 유지하고, 노이즈 제거와 에지 추출 과정을 포함한다. 진단 결과의 정량적 판별에 중요 지표가 되는 색상정보가 조명의 영향의 의해 왜곡되는 것을 보완하기 위하여 표본 추출된 학습데이터로부터 조명 보정 곡선을 생성한다. 20종류의 색상패턴을 대상으로 적용한 실험 결과를 통하여 제안된 이론의 유용성을 고찰한다.
본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.