DOI QR코드

DOI QR Code

Robust Method of Updating Reference Background Image in Unstable Illumination Condition

불안정한 조명 환경에 강인한 참조 배경 영상의 갱신 기법

  • Received : 2009.09.21
  • Accepted : 2010.01.26
  • Published : 2010.01.31

Abstract

It is very difficult that a previous surveillance system and vehicle detection system find objects on a limited and unstable illumination condition. This paper proposes a robust method of adaptively updating a reference background image for solving problems that are generated by the unstable illumination. The first input image is set up as the reference background image, and is divided into three block categories according to an edge component. Then a block state analysis, which uses a rate of change of the brightness, a stability, a color information, and an edge component on each block, is applied to the input image. On the reference background image, neighbourhood blocks having the same state of a updated block are merged as a block. The proposed method can generate a robust reference background image because it distinguishes a moving object area from an unstable illumination. The proposed method very efficiently updates the reference background image from the point of view of the management and the processing time. In order to demonstrate the superiority of the proposed stable manner in situation that an illumination quickly changes.

기존의 감시 시스템이나 차량 검출 시스템은 제한되고 불안정한 조명환경에서는 객체들을 검출하기 어렵다. 본 논문에서는 불안정한 조명의 영향에 의한 문제점들을 해결하기 위해 참조 배경 영상의 적응적인 갱신 기법을 제안한다. 처음 입력영상을 참조 배경영상으로 설정하고 에지 성분에 따라 3가지 블록 크기로 나눈다. 그리고 각 블록의 밝기 변화량, 안정성, 색상 정보 그리고 에지 성분을 이용하는 블록상태 분석법이 적용된다. 참조 배경 영상에서 갱신된 블록과 같은 블록 상태를 갖는 인접하는 블록들을 하나의 블록으로 병합시킨다. 제안하는 기법은 움직이는 객체와 불안정한 조명을 구별할 수 있어 강인한 참조 배경 영상을 생성할 수 있다. 그리고 제안하는 블록 상태 분석법은 참조 배경 영상을 운영적인 측면과 시간적인 측면에서 매우 효율적으로 갱신시킨다. 본 논문은 제안하는 기법의 우수성을 입증하기 위해 조명이 빠르게 변화하는 도로 환경에서 제안하는 기법이 군집화를 통해 차량을 안정적으로 검출함을 보였다.

Keywords

References

  1. K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, "Real-time Foreground-Background Segmentation using Codebook Model," Real-time Imaging, Vol. 11, Issue 3, pp. 172-185, June 2005. https://doi.org/10.1016/j.rti.2004.12.004
  2. Yongbin Li, Feng Chen, Wenli Xu, and Youtian Du, "Gaussian-Based Codebook Model for Video Background Subtraction," Lecture Notes in Computer Science, pp.762-765, Sept. 2006.
  3. Mohamad Hoseyn Sigari, and Mahmood Fathy, "Real-time Background Modeling/Subtraction using Two-Layer Codebook Model," International MultiConference of Engineers and Computer Scientists, Vol. 1, Mar. 2008.
  4. Luthon, F., and Beaumesnil, B.,"Color and R.O.I. with JPEG2000 for wireless video surveillance", Image Processing, 2004. ICIP '04. 2004 International Conferenceon, Vol. 5, pp. 3205-3208, Oct. 2004.
  5. J. Meessen, C. Parisot, C. Le Barz, D. Nicholson, and J. F. Delaigle., "WCAM: Smart Encoding for Wireless Surveillance,", In SPIE Image and Video Communications and Processing (IVCP 05), Vol. 5685, pp. 14-26, Jan. 2005.
  6. C. Stauffer, and W. E. L. Grimson, "Adaptive Background Mixture Models for Read-Time Tracking," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 246-252, 1999.
  7. Michael Harville., "A framework for high-level feedback to adaptive per-pixel mixture of gaussian models," Computer Vision ECCV 2002, Vol. 2352 pp. 37-49, Jan. 2002.
  8. R. Tan, H. Huo, J. Qian, and T. Fang., "Traffic video segmentation using adaptive-k gaussian mixture model," The International Workshop on Intelligent Computing, pp. 125-134, Aug. 2006.
  9. Mohamad Hoseyn Sigari, Naser Mozayani, and Hamid Reza Pourreza, "Fuzzy running average and fuzzy background subtraction: Concepts and application," International Journal of Computer Science and Network Security 8, pp. 138-143, Feb. 2008.
  10. El Baf F., Bouwmans T., and Vachon B, "Fuzzy integral for moving object detection," IEEE International Conference on, pp. 1729-1736, June 2008.
  11. Shuguang Zhao, Jun Zhao, Yuan Wang, and Xinlin Fu, "Moving Object Detecting Using Gradient Information, Three-Frame-Differencing and Connectivity Testing," Australian Conference on Artificial Intelligence, pp.510-518, 2006.
  12. 주성일, 전영민, 최형일, "불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘," 한국컴퓨터정보학회논문지, 제 13권, 제 6호 통권 제56호, 117-125쪽, 2008년 11월.
  13. 장대식, "지역적 불변특징 기반의 3차원 환경인식 및 모델링," 한국컴퓨터정보학회논문지, 제11권, 제3호, 31-39쪽, 2006년 11월.
  14. Takayuki Nishi and Hironobu Fujiyoshi, "Object- Based Video Coding Using Pixel State Analysis," Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04), vol. 3 pp. 306-309, Aug. 2004.
  15. Fujiyoshi, Hironobu, and Kanade, Takayuki, "Layered Detection for Multiple Overlapping Objects," 16th International Conference on Pattern Recognition, 2002. Proceedings, Vol. 4, pp. 156-161, Aug. 2002.