DOI QR코드

DOI QR Code

Stop Object Method within Intersection with Using Adaptive Background Image

적응적 배경영상을 이용한 교차로 내 정지 객체 검출 방법

  • Received : 2013.04.05
  • Accepted : 2013.05.09
  • Published : 2013.05.31

Abstract

This study suggests a method of detecting the still object, which becomes a cause of danger within the crossroad. The Inverse Perspective Transform was performed in order to make the object size consistent by being inputted the real-time image from CCTV that is installed within the crossroad. It established the detection area in the image with the perspective transform and generated the adaptative background image with the use of the moving information on object. The detection of the stop object was detected the candidate region of the stop object by using the background-image differential method. To grasp the appearance of truth on the detected candidate region, a method is proposed that uses the gradient information on image and EHD(Edge Histogram Descriptor). To examine performance of the suggested algorithm, it experimented by storing the images in the commuting time and the daytime through DVR, which is installed on the cross street. As a result of experiment, it could efficiently detect the stop vehicle within the detection region inside the crossroad. The processing speed is shown in 13~18 frame per second according to the area of the detection region, thereby being judged to likely have no problem about the real-time processing.

본 논문에서는 교차로 내에 위험의 원인이 되는 정지 객체를 검지하는 방법을 제안한다. 교차로 내에 설치된 CCTV에서 실시간 영상을 입력받아 객체의 크기를 일정하게 하기 위하여 역원근변환을 수행하였다. 원근변환된 영상에서 검지영역을 설정하고 객체의 이동 정보를 이용한 적응적인 배경영상을 생성하였다. 정지한 객체의 검출은 배경영상 차이법을 사용하여 정지한 객체의 후보 영역을 검출하였다. 검출된 후보 영역의 진위 여부를 파악하기 위하여 영상의 기울기 정보와 EHD(Edge Histogram Descriptor)를 이용하는 방법을 제안한다. 제안한 알고리즘의 성능을 알아보기 위하여 교차로에 설치된 DVR을 통해 출퇴근 시간 및 주간 대의 영상을 저장하여 실험하였다. 실험 결과 교차로 내의 검지영역 내에 정지한 차량을 효율적으로 감지할 수 있었으며 검지영역의 면적에 따라 초당 13~18프레임의 처리속도를 나타내어 실시간 처리에 문제가 없을 것으로 판단된다.

Keywords

References

  1. Young-Kul Ki, Dong-Young Lee, "A Traffic Accident Recording and Reporting Model at Intersections," IEEE Transaction on Intelligent Transportation System, Vol. 8, No. 2, 2007. DOI: http://dx.doi.org/10.1109/TITS.2006.890070
  2. ZuWhan Kim, "Real Time Object Tracking based on Dynamic Feature Grouping with Background Subtraction," IEEE Conference on Computer Vision and Pattern Recognition, 2008. DOI: http://dx.doi.org/10.1109%2fCVPR.2008.4587551 https://doi.org/10.1109%2fCVPR.2008.4587551
  3. Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, Masao Sakauchi, "Traffic Monitoring and Accident Detection at Intersections," IEEE Transaction on Intelligent Transportation System, Vol. 1, No. 2, 2000. DOI: http://dx.doi.org/10.1109/6979.880968
  4. ZuWhan Kim, Jitendra Malik, "Fast Vehicle Detection With Probabilistic Feature Grouping and Its Application to Vehicle Tracking," IEEE International Conference On Computer Vision, Vol. 1, pp. 524-531, 2003. DOI: http://dx.doi.org/10.1109/ICCV.2003.1238392
  5. Michael Haag, Hans-Hellmut Nagel, "Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequence," International Journal of Computer Vision, Vol. 35, No. 3, pp. 295-319, 1999. DOI: http://dx.doi.org/10.1023/A:1008112528134
  6. Dongjin Han, Matthew J. Leotta, David B. Cooper, Joseph L. Mundy, "Vehicle Class Recognition from Video based on 3D Curve Probes," 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 285-292, 2005.
  7. DarShyang Lee, "Effective Gaussian Mixture Learning for Video Background Subtraction," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, pp. 827-832, May 2005. DOI: http://dx.doi.org/10.1109/TPAMI.2005.102
  8. Chee Sun Won, Dong Kwon Park, Soo Jun Park, "Efficient Use of MPEG-7 Edge Histogram Descriptor," ETRI Journal, Vol. 24, No. 1, pp. 23-30, 2002. DOI: http://dx.doi.org/10.4218/etrij.02.0102.0103