• Title/Summary/Keyword: 저항 분포도

Search Result 935, Processing Time 0.031 seconds

Development and Implementation of a 2-Phase Calibration Method for Gravity Model Considering Accessibility (접근성 지표를 도입한 중력모형의 2단계 정산기법 개발 및 적용)

  • CHOI, Sung Taek;RHO, Jeong Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.393-404
    • /
    • 2015
  • Gravity model has had the major problem that the model explains the characteristics of travel behavior with only deterrence factors such as travel time or cost. In modern society, travel behavior can be affected not only deterrence factors but also zonal characteristics or transportation service. Therefore, those features have to be considered to estimate the future travel demand accurately. In this regard, there are two primary aims of this study: 1. to identify the characteristics of inter-zonal travel, 2. to develop the new type of calibration method. By employing accessibility variable which can explain the manifold pattern of trip, we define the zonal travel behavior newly. Furthermore, we suggest 2-phase calibration method, since existing calibration method cannot find the optimum solution when organizing the deterrence function with the new variables. The new method proceeds with 2 steps; step 1.estimating deterrence parameter, step 2. finding balancing factors. The validation results with RMSE, E-norm, C.R show that this study model explains the inter-zonal travel pattern adequately and estimate the O/D pairs precisely than existing gravity model. Especially, the problem with estimation of short distance trip is overcomed. In conclusion, it is possible to draw the conclusion that this study suggests the possibility of improvement for trip distribution model.

A Study on the Properties Analysis of an Iron Fittings Type CSST Damaged by the PCITS (PCITS에 의해 소손된 강이음쇠형 CSST의 특성 해석에 관한 연구)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.121-127
    • /
    • 2016
  • This study analyzed the structural and electrical characteristics of an iron fittings type Corrugated Stainless Steel Tubing (CSST) damaged by the Primary Current Injection Test System (PCITS). CSST consists of cladding, tube, nuts, clamp ring, flare cap, socket, and ball valve. For an evaluation of the dielectric withstand voltage, the area between the live part and non-live part of the CCST shall withstand a voltage of 220 V AC for one minute. For an evaluation of the insulation performance by 500 V DC, it is required that the insulation exceed more than $1M{\Omega}$ before the temperature rise test, $0.3M{\Omega}$ after the test. Although the average resistance of the product was $11.5m{\Omega}$, that of the product damaged at a current of 130 A by the PCITS was $11.50m{\Omega}$. Furthermore, parts of the cladding were melted and black smoke appeared when a current of 130 A applied for 10 s. After 60 s, most parts were heated and turned red. At 120 s, the parts that turned red had widened. Although it did not form a normal distribution because the P value was 0.019 with a confidential interval of 95%, it revealed outstanding characteristics with an AD (Anderson-Darling) value of 0.896 and a standard deviation of 0.5573.

An analysis on geomorphic and hydraulic characteristics of dominant discharge in nam river (남강의 지배유량에 대한 하도지형 및 수리 특성 분석)

  • Kim, Ki Heung;Lee, Hyeong-Rae;Jung, Hea Reyn
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.83-94
    • /
    • 2016
  • Geomorphological, bed material and hydraulic characteristics are basis informations for the planning, design and management of the river in the aspect of flood control and environmental conservation, and it is very important to use these informations for the design of stable channel. In this study, dominant discharge was selected, geomorphological and hydraulic characteristics were analyzed using that discharge and also the characteristics of bed materials distribution were analyzed and bed materials-flow resistance relationship was evaluated, for the upstream section of Namgang dam. The dominant discharge was estimated a return period of approximately 1.5 year and stream type were classified Segment 1 and Segment 2 in this stream. Also, the frequency of riffle-pool showed 4.4 because this study area has the characteristics of natural channel that have not channel-crossing structures. In dominant discharge, according to the results that analyzed relationship between $h/d_{50}$ and $V/u_*$ to calculate flow resistance by bed materials, Julian's formula showed to appropriate in channel where is relatively close to natural river and is predominantly consisted of gravel, cobble, boulder and rock in mountain, and it was confirmed that the image processing methodology will be easily applied to the analysis of bed materials distribution in future.

Evaluation of Strain Distribution and Pullout Strength based on Width and Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 폭과 설치간격에 따른 변형률 분포 및 인발강도 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • This paper describes large-scale pullout test results of geosynthetic strip, which can be applied in reinforced earth wall with block-type wall facing. The pullout tests are conducted to evaluate the strain distribution, the induced pullout force and the pullout strength. The maximum pullout force is appeared regardless of reinforcement width and normal stress when end displacement is less than 15 mm. The pullout behavior based on horizontal spacing of reinforcement was similar in relationship between pullout force and end displacement. The strain distribution and pullout force distribution of the geosynthetic strip are concentrated in the front part of reinforcement, and it appeared clearly in higher normal stress condition This means that the pullout behavior of geosynthetic strip is affected by the bond between soil and friction resistance reinforcement according normal stress. Therefore, the pullout resistance design is reasonable when pullout behavior of geosynthetic strip should be evaluated by effective length considering tensile characteristic.

A Study on the Improvement of Measuring Methods in Land Suitability Assessment: Focused on the Distance Measurement and Threshold Definition (토지적성평가 평가방법 개선방안 연구 : 거리측정 및 임계치 설정방안을 중심으로)

  • Jeong, Yeun-Woo;Lee, Sang-Jun
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.69-78
    • /
    • 2012
  • This study proposes an approach to improve the accuracy of land assessment result focused on the Land Suitability Assessment. The detailed analysis processes are; (a) that they are analyzed considering resistance in distance measurement on the space characteristics of location, and; (b) that an assessment result is measured according to the threshold definition of membership function, which is applied in estimating conservation suitability. The assessment results are; firstly, the method considering resistance better reflects the local characteristics of area with worse accessibility including rivers and mountains than one by linear distance; secondly, the existing method that the maximum value of a target area is defined as the maximum threshold may draw a value evaluated lower than a threshold definition considering the distribution of measured indices. Finally, satellite images are overlapped with the assessed results, the applicability level from the approach proposed by this study is more coincident with the present status. The assessment method proposed by this study can be meaningful in view of that it improves the accuracy of Land Suitability Assessment. Furthermore, it can be applied as SDSS, which can support effective establishment of urban policies, in case of complementing the problems in executing the assessment system.

Effect on Graphene Addition on Characteristics of Polypropylene Biocomposites Reinforced with Sulfuric Acid Treated Green Algae (황산처리된 녹조류 보강 폴리프로필렌 바이오복합재료에 대한 그래핀 첨가영향)

  • Jang, Young Hun;Han, Seong Ok;Kim, Hyung-Il;Sim, I Na
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.518-525
    • /
    • 2013
  • To improve the mechanical properties of polypropylene (PP) biocomposites reinforced with sulfuric acidtreated green algae (SGA), SGA/graphite nanoplatelets (GNP)/PP biocomposites were prepared and their properties were evaluated depending on the particle size and content of GNP. The flexural and impact strength of SGA/GNP/PP biocomposites decreased with the addition of GNP, whereas the flexrual and storage moduli were greatly improved with increasing GNP loading. SGA/GNP/PP biocomposites reinforced with GNP5 showed generally better mechanical properties compared to that reinforced with GNP15 mainly due to the improved dispersion of the smaller GNP. SGA/GNP/PP biocomposites reinforced with GNP5 showed a lower resistance to the thermal expansion because the relatively uniform dispersion of smaller GNP was responsible for the effective heat transfer to the polymer matrix. As a result, SGA/GNP/PP biocomposite was acceptable for the general purpose application due to the improved flexural resistance, storage moduli, and damping characteristics.

Analysis of 6-Beam Accelerometer Using (111) Silicon Wafer by Finite Element Method ((111) 실리콘 웨이퍼를 이용한 6빔 가속도센서의 유한요소법 해석)

  • Sim, Jun-Hwan;Kim, Dong-Kwon;Seo, Chang-Taeg;Yu, In-Sik;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.346-355
    • /
    • 1997
  • In this paper, the analyses of the stress disturibution and frequency characteristics of silicon microstructures for an accelerometer were performed using the general purpose finite element simulation program, ANSYS. From the analyses, we determined the parameter values of a new 6-beam piezoresistive accelerometer applicable to the accelerometer's specification in airbag system of automobile. Then, the mass paddle radius, beam length, beam width, and beam thickness of the designed accelerometer were$500{\mu}m$, $350{\mu}m$, $100{\mu}m$, and $5{\mu}m$, respectively and two different seismic masses with 0.4 mg and 0.8 mg were defined on the same sensor structure. The designed 6- beam accelerometers were fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon substrates and the characteristics of the fabricated accelerometers were investigated. Then, we used a micromachining technique using porous silicon etching method for the formation of the micromechanical structure of the accelerometer.

  • PDF

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.

Tension Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력저항 앵커의 인장 시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.175-181
    • /
    • 2004
  • This study is about a section where underground water level occurs at the underground 5m depth by the excavation of the ground, as a stream is adjacent to a excavation section of High Speed Railway ${\bigcirc}{\bigcirc}$ Station construction sections and a reservoir being always full of water is located at the left side of the construction section. Therefore this test is executed for the design and construction of buoyance anchors able to permanently prevent buoyance by the underground water level at working and for the stable construction and permanent smooth maintenance of structures. In this test, bar type anchors are divided according to their length and standard to execute test-anchor test, and In spot test, 9 test-anchors test, proof test to construction process, suitability test and acceptance test are executed 4 times to 9 test-anchors by dividing anchors according to the length of permanent anchor, the outer diameter of bar and boring diameter. Standard motion characteristic centering on load transmission and break mechanism of bar-type anchors for the prevention of buoyance will be showed in the thesis.

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.