DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials

기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성

  • Seo, Jin-Seong (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 서진성 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2019.08.12
  • Accepted : 2019.10.13
  • Published : 2019.12.01

Abstract

$Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

차세대 리튬이차전지용 음극활물질로 각광을 받고있는 $Li_4Ti_5O_{12}$는 높은 수명특성, 낮은 비가역용량 그리고 충방전시 부피팽창이 거의 없는 물질이다. 하지만 낮은 전기전도도로 인하여 높은 전류밀도에서는 용량특성이 현저하게 낮아지는 단점을 가지고 있다. 이 문제점을 해결하기 위해 P123을 첨가한 졸-겔법으로 기공구조의 $Li_4Ti_5O_{12}$를 합성하였다. 제조된 샘플들의 물리적 특성을 분석하기 위해 XRD, SEM, BET를 사용하였고, 전기화학적 특성은 사이클테스트, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS)로 분석을 하였다. P123/Ti = 0.01mol의 비율로 만들어진 $Li_4Ti_5O_{12}$에서 가장 균일한 입자사이즈, 높은 비표면적, 그리고 상대적으로 높은 기공의 분포를 보였다. EIS분석 결과 기공구조의 $Li_4Ti_5O_{12}$의 경우 저항을 나타내는 반원의 크기가 현저하게 감소하였으며, 전극 내 저항값이 줄어들었음을 알 수 있었다. 율속 테스트결과 0.2C에서 178 mAh/g, 0.5C에서 170 mAh/g, 5C에서 110 mAh/g 그리고 10C에서 90 mAh/g의 용량을 유지하였고 용량회복율 또한 99%로 매우 우수하였다.

Keywords

References

  1. Ji, L., Lin, Z., Alcoutlabi, M. and Zhang, X., "Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-ion Batteries," Energ. Environ. Sci., 4(8), 2682-2699(2011). https://doi.org/10.1039/c0ee00699h
  2. Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D., "Challenges in the Development of Advanced Li-ion Batteries: a Review," Energ. Environ. Sci., 4(9), 3243-3262(2011). https://doi.org/10.1039/c1ee01598b
  3. Park, C. M., Kim, J. H., Kim, H. S. and Sohn, H. J., "Li-alloy Based Anode Materials for Li Secondary Batteries," Chem. Soc. Rev., 39(8), 3115-3141(2010). https://doi.org/10.1039/b919877f
  4. Zhu, G. N., Wang, Y. G. and Xia, Y. Y., "Ti-based Compounds as Anode Materials for Li-ion Batteries," Energ. Environ. Sci., 5(5), 6652-6667(2012). https://doi.org/10.1039/c2ee03410g
  5. Shi, Y., Wen, L., Li, F. and Cheng, H. M., "Nanosized $Li_4Ti_5O_{12}$/Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteries," J. Power Sources, 196(20), 8610-8617(2011). https://doi.org/10.1016/j.jpowsour.2011.06.002
  6. Kim, J. W., Lee, K. E., Kim, K. H., Wi, S. G., Lee, S. H., Nam, S. H., Kim, C. J., Kim, S. O. and Park, B. W., "Single-layer Graphene-wrapped $Li_4Ti_5O_{12}$ Anode with Superior Lithium Storage Capability," Carbon, 114, 275-283(2018). https://doi.org/10.1016/j.carbon.2016.12.022
  7. Zou, H., Liang, X., Feng, X., Xiang, H., "Chromium-modified $Li_4Ti_5O_{12}$ with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing," ACS Appl. Mater. Inter., 8(33), 21407-21416(2016). https://doi.org/10.1021/acsami.6b07742
  8. Zhang, P., Huang, Y., Jia, W., Cai, Y., Wang, X., Guo, Y., Jia, D., Sun, Z. and Guo, Z., "Improved Rate Capability and Cycling Stability of Novel Terbium-doped Lithium Titanate for Lithium-ion Batteries," Electrochimi. Acta, 210, 935-941(2016). https://doi.org/10.1016/j.electacta.2016.06.017
  9. Katelen, H., Tuncer, M., Tu, S., Repp, S., Gocmez, H., Thomann, R., Weber, S. and Erdem, E., "Mn-substituted Spinel $Li_4Ti_5O_{12}$ Materials Studied by Multifrequency EPR Spectroscopy," J. Mater. Chem. A, 1(34), 9973-9982(2013). https://doi.org/10.1039/c3ta11590a
  10. Hou, L., Qin, X., Gao, X., Guo, T., Li, X. and Li, J., "Zr-doped $Li_4Ti_5O_{12}$ Anode Materials with High Specific Capacity for Lithium-ion Batteries," J. Alloy. Comp., 774, 38-45(2019). https://doi.org/10.1016/j.jallcom.2018.09.364
  11. Wang, W., Wang, H., Wang, S., Hu, Y., Tian, Q. and Jiao, S., "Rudoped $Li_4Ti_5O_{12}$ Anode Materials for High Rate Lithium-ion Batteries," J. Power Sources, 228, 244-249(2013). https://doi.org/10.1016/j.jpowsour.2012.11.092
  12. Jiang, C., Ichihara, M., Honma, I. and Zhou, H., "Effect of Particle Dispersion on High Rate Performance of Nano-sized $Li_4Ti_5O_{12}$ Anode," Electrochim. Acta, 52(23), 6470-6475(2007). https://doi.org/10.1016/j.electacta.2007.04.070
  13. Kim, D. H., Ahn, Y. S. and Kim, J., "Polyol-mediated Synthesis of $Li_4Ti_5O_{12}$ Nanoparticle and Its Electrochemical Properties," Electrochem. Commun., 7(12), 1340-1344(2005). https://doi.org/10.1016/j.elecom.2005.09.027
  14. Chen, J., Yang, L., Fang, S., Hirano, S. and Tachibana, K., "Synthesis of Hierarchical Mesoporous Nest-like $Li_4Ti_5O_{12}$ for High-rate Lithium Ion Batteries," J. Power Sources, 200, 59-66(2012). https://doi.org/10.1016/j.jpowsour.2011.10.052
  15. Marien, C. B. D., Marchal, C., Koch, A., Robert, D. and Drogui, P., "Sol-gel Synthesis of $TiO_2$ Nanoparticle's Morphology and Photo Catalytic Degradation of Paraquat," Environ. Sci. Pollut. R., 24(14), 12582-12588(2017). https://doi.org/10.1007/s11356-016-7681-2
  16. Baek, G. Y., Jeong, S. M., Na, B. K., "Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method," Clean Technol., 22(4), 308-315(2016). https://doi.org/10.7464/ksct.2016.22.4.308
  17. Othman, Z., "A Review : Fundamental Aspects of Silicate Mesoporous Materials, Materials," 5(12), 2874-2902(2012). https://doi.org/10.3390/ma5122874
  18. Zhao, S., Sheng, X., Zhou, Y., He, M., Fu, X. and Zhang, Y., "Facile One-step Synthesis of Micro/mesoporous Material with Ordered Bimodal Mesopores Templated by Protic Ionic Liquid as a Heterogeneous Catalyst Support for Alkylation," J. Porous Mat., 22(6), 1407-1416(2015). https://doi.org/10.1007/s10934-015-0020-z
  19. Shen, L., Zhang, X., Uchaker, E., Yuan, C. and Cao, G., "$Li_4Ti_5O_{12}$ Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries," Adv. Engergy Mater., 2(6), 691-698(2012). https://doi.org/10.1002/aenm.201100720
  20. Nithya, V. D., Sharmila, S., Vediappan, K., Lee, C. W., Vasylechko, L. and R. K. Selvan, "Electrical and Electrochemical Properties of Molten-salt-synthesized 0.05 mol Zr- and Si-doped $Li_4Ti_5O_{12}$ Microcrystals," J. Appl. Electrochem., 44(5), 647-654(2014). https://doi.org/10.1007/s10800-014-0671-5
  21. Tang, Y. F., Yang, L., Qiu, Z. and Huang, J. S., "Preparation and Electrochemical Lithium Storage of Flower-like Spinel $Li_4Ti_5O_{12}$ Consisting of Nanosheets," Electrochem. Commun., 10(10), 1513-1516(2008). https://doi.org/10.1016/j.elecom.2008.07.049
  22. Zhang, C., Zhang, Y., Wang, J., Wang, D., He, D. and Xia, Y., "$Li_4Ti_5O_{12}$ Prepared by a Modified Citric Acid Sol-gel Method for Lithium Ion Battery," J. Power Sources, 236, 118-125(2013). https://doi.org/10.1016/j.jpowsour.2013.01.135
  23. Cohn, G., Eichel, R. A. and Eli, T. E., "New Insight Into the Discharge Mechanism of Silicon-air Batteries Using Electrochemical Impedance Spectroscopy," Phys. Chem. Chem. Phys., 15(9), 3256-3263(2013). https://doi.org/10.1039/c2cp43870d
  24. He, Y. B., Liu, M., Huang, Z. D., Zhang, B., Yu, Y., Li, B., Kang, F. and Kim, J. K., "Effect of Solid Electrolyte Interface (SEI) Film on Cyclic Performance of $Li_4Ti_5O_{12}$ Anodes for Li Ion Batteries," J. Power Sources, 239, 269-276(2013). https://doi.org/10.1016/j.jpowsour.2013.03.141
  25. Lu, G., Liu, J., Huang, W., Wang, X. and Wang, F., "Boosting the Electrochemical Performance of $Li_4Ti_5O_{12}$ Through Nitrogen-doped Carbon Coating," Appl. Organomet. Chem., 33(7), e4957(2019). https://doi.org/10.1002/aoc.4957
  26. Reddy, M. V., Madhavi, S., Rao, G. V. S. and Chowdari, B. V. R., "Metal Oxyfluorides $TiOF_2$ and $NbO_2F$ as Anodes for Li-ion Batteries," J. Power Sources, 162(2), 1312-1321(2006). https://doi.org/10.1016/j.jpowsour.2006.08.020
  27. Sun, L., Wang, J., Jiang, K. and Fan, S., "Mesoporous $Li_4Ti_5O_{12}$ Nanoclusters as High Performance Negative Electrodes for Lithium Ion Batteries," J. Power Sources, 248, 265-272(2014). https://doi.org/10.1016/j.jpowsour.2013.09.041
  28. Zhang, Z., Cao, L., Huang, J., Wang, D., Wu, J. and Cai, Y., "Hydrothermal Synthesis of $Li_4T_{i5}O_{12}$ Microsphere with High Capacity as Anode Material for Lithium Ion Batteries," Ceram. Int., 39(3), 2695-2698(2013). https://doi.org/10.1016/j.ceramint.2012.09.036