• Title/Summary/Keyword: 저잡음

Search Result 740, Processing Time 0.022 seconds

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Regional Characteristics of Global Warming: Linear Projection for the Timing of Unprecedented Climate (지구온난화의 지역적 특성: 전례 없는 기후 시기에 대한 선형 전망)

  • SHIN, HO-JEONG;JANG, CHAN JOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Even if an external forcing that will drive a climate change is given uniformly over the globe, the corresponding climate change and the feedbacks by the climate system differ by region. Thus the detection of global warming signal has been made on a regional scale as well as on a global average against the internal variabilities and other noises involved in the climate change. The purpose of this study is to estimate a timing of unprecedented climate due to global warming and to analyze the regional differences in the estimated results. For this purpose, unlike previous studies that used climate simulation data, we used an observational dataset to estimate a magnitude of internal variability and a future temperature change. We calculated a linear trend in surface temperature using a historical temperature record from 1880 to 2014 and a magnitude of internal variability as the largest temperature displacement from the linear trend. A timing of unprecedented climate was defined as the first year when a predicted minimum temperature exceeds the maximum temperature record in a historical data and remains as such since then. Presumed that the linear trend and the maximum displacement will be maintained in the future, an unprecedented climate over the land would come within 200 years from now in the western area of Africa, the low latitudes including India and the southern part of Arabian Peninsula in Eurasia, the high latitudes including Greenland and the mid-western part of Canada in North America, the low latitudes including Amazon in South America, the areas surrounding the Ross Sea in Antarctica, and parts of East Asia including Korean Peninsula. On the other hand, an unprecedented climate would come later after 400 years in the high latitudes of Eurasia including the northern Europe, the middle and southern parts of North America including the U.S.A. and Mexico. For the ocean, an unprecedented climate would come within 200 years over the Indian Ocean, the middle latitudes of the North Atlantic and the South Atlantic, parts of the Southern Ocean, the Antarctic Ross Sea, and parts of the Arctic Sea. In the meantime, an unprecedented climate would come even after thousands of years over some other regions of ocean including the eastern tropical Pacific and the North Pacific middle latitudes where an internal variability is large. In summary, spatial pattern in timing of unprecedented climate are different for each continent. For the ocean, it is highly affected by large internal variability except for the high-latitude regions with a significant warming trend. As such, a timing of an unprecedented climate would not be uniform over the globe but considerably different by region. Our results suggest that it is necessary to consider an internal variability as well as a regional warming rate when planning a climate change mitigation and adaption policy.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

The Effect of PET Scan Time on the Off-Line PET Image Quality in Proton Therapy (양성자 치료에서 영상 획득 시간에 따른 Off Line PET의 효율성 검증)

  • Hong, Gun-Chul;Jang, Joon-Yung;Park, Se-Joon;Cha, Eun-Sun;Lee, Hyuk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.74-79
    • /
    • 2017
  • Purpose Proton therapy can deliver an optimal dose to tumor while reducing unnecessary dose to normal tissue as compared the conventional photon therapy. As proton beams are irradiated into tissue, various positron emitters are produced via nuclear fragmentation reactions. These positron emitters could be used for the dose verification by using PET. However, the short half-life of the radioisotopes makes it hard to obtain the enough amounts of events. The aim of this study is to investigate the effect of off-line PET imaging scan time on the PET image quality. Materials and Methods The various diameters of spheres (D=37, 28, 22 mm) filled with distilled water were inserted in a 2001 IEC body phantom. Then proton beams (100 MU) were irradiated into the center of the each sphere using the wobbling technique with the gantry angle of $0^{\circ}$. The modulation widths of the spread out bragg peak were 16.4, 14.7 and 9.3 cm for the spheres of 37, 28 and 22 mm in diameters respectively. After 5 min of the proton irradiation, the PET images of the IEC body phantom were obtained for 50 min. The PET images with different time courses (0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min) were obtained by dividing the frame with a duration of 10 min. In order to evaluate the off-line PET image quality with the different time courses, the contrast-to-noise ratio (CNR) of the PET image calculated for each sphere. Results The CNRs of the sphere (D=37 mm) were 0.43, 0.42, 0.40, 0.31 and 0.21 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNRs of the sphere (D=28 mm) were 0.36, 0.32, 0.27, 0.19 and 0.09 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNR of 37 mm sphere was decreased rapidly after 30 min of the proton irradiation. In case of the spheres of 28 mm and 22 mm, the CNR was decreased drastically after 20 min of the irradiation. Conclusion The off-line PET imaging time is an important factor for the monitoring of the proton therapy. In case of the lesion diameter of 22 mm, the off-line PET image should be obtained within 25 min after the proton irradiation. When it comes to small size of tumor, the long PET imaging time will be beneficial for the proton therapy treatment monitoring.

  • PDF

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

An adaptive digital watermark using the spatial masking (공간 마스킹을 이용한 적응적 디지털 워터 마크)

  • 김현태
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.39-52
    • /
    • 1999
  • In this paper we propose a new watermarking technique for copyright protection of images. The proposed technique is based on a spatial masking method with a spatial scale parameter. In general it becomes more robust against various attacks but with some degradations on the image quality as the amplitude of the watermark increases. On the other hand it becomes perceptually more invisible but more vulnerable to various attacks as the amplitude of the watermark decreases. Thus it is quite complex to decide the compromise between the robustness of watermark and its visibility. We note that watermarking using the spread spectrum is not robust enought. That is there may be some areas in the image that are tolerable to strong watermark signals. However large smooth areas may not be strong enough. Thus in order to enhance the invisibility of watermarked image for those areas the spatial masking characteristics of the HVS(Human Visual System) should be exploited. That is for texture regions the magnitude of the watermark can be large whereas for those smooth regions the magnitude of the watermark can be small. As a result the proposed watermarking algorithm is intend to satisfy both the robustness of watermark and the quality of the image. The experimental results show that the proposed algorithm is robust to image deformations(such as compression adding noise image scaling clipping and collusion attack).

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF