• Title/Summary/Keyword: 저온도 기법

Search Result 102, Processing Time 0.024 seconds

A Method for Evaluating the Temperature Coefficient of a Compound Semiconductor Energy Gap by Infrared Imaging Technique (적외선 영상기법에 의한 화합물 반도체 에너지갭의 온도계수 측정 방법)

  • Kang, Seong-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.338-346
    • /
    • 2001
  • An infrared imaging method in which direct measurement of energy gap variations can be achieved by digital image processing is proposed. This method allows economic and easy evaluation of the temperature coefficients of a semiconductor energy gap. The key components of the method are a polychromator, a computer equipped with a frame grabber and a variable temperature cryostat. Tentative experimentation conducted on LEC grown semi-insulating GaAs has resulted in a fairly good agreement with the theoretical model. This proposed method could be applicable for most compound semiconductors.

  • PDF

Analysis of Performance, Energy-efficiency and Temperature for 3D Multi-core Processors according to Floorplan Methods (플로어플랜 기법에 따른 3차원 멀티코어 프로세서의 성능, 전력효율성, 온도 분석)

  • Choi, Hong-Jun;Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.265-274
    • /
    • 2010
  • As the process technology scales down and integration densities continue to increase, interconnection has become one of the most important factors in performance of recent multi-core processors. Recently, to reduce the delay due to interconnection, 3D architecture has been adopted in designing multi-core processors. In 3D multi-core processors, multiple cores are stacked vertically and each core on different layers are connected by direct vertical TSVs(through-silicon vias). Compared to 2D multi-core architecture, 3D multi-core architecture reduces wire length significantly, leading to decreased interconnection delay and lower power consumption. Despite the benefits mentioned above, 3D design technique cannot be practical without proper solutions for hotspots due to high temperature. In this paper, we propose three floorplan schemes for reducing the peak temperature in 3D multi-core processors. According to our simulation results, the proposed floorplan schemes are expected to mitigate the thermal problems of 3D multi-core processors efficiently, resulting in improved reliability. Moreover, processor performance improves by reducing the performance degradation due to DTM techniques. Power consumption also can be reduced by decreased temperature and reduced execution time.

Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira (돈나무의 내한성 평가 모델링)

  • Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.241-251
    • /
    • 2014
  • This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.

Electrochemical Analysis of Lithium-Ion Battery at Standard Temperature and Low temperature Using EVS(Electrochemical Voltage Spectroscopy) (EVS(Electrochemical Volatage Spectroscopy)기법을 이용한 리튬이온배터리의 상온과 저온에서의 전기화학적 분석)

  • Han, Dong-Ho;Kim, Jong-Hoon;Lee, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.159-160
    • /
    • 2017
  • 본 논문에서는 리튬배터리의 전기화학적 분석법으로 전기 화학적 전압 분광법(electrochemical voltage spectroscopy;EVS)을 사용하였다. 전기화학적 활성상태의 밀도를 직접 측정하는 기법으로 정전압(potentiostatic) 제어를 기반으로 한다. EVS 테스트에서 양전극의 전압은 각 단계가 전기화학적 평행상태에 도달할 때 까지 유지되며 이 방법은 배터리의 전기화학적 산화 환원 전위의 미세한 차이에 기초하여 활성 물질의 상태에 대한 정확한 정보를 얻을 수 있다.

  • PDF

Screen Printed ZnBO Doped BST Thick Film Planner Capacitors (스크린 프린팅 기법으로 제작된 ZnBO가 첨가 (Ba,Sr)$TiO_3$ 후막의 planner capacitor 특성분석)

  • Moon, Sang-Ho;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.73-76
    • /
    • 2009
  • ZnBo이 첨가된 (Ba,Sr)$TiO_3$ 후막을 이용한 planner capacitor의 전기적 특성을 조사하였다. 후막은 알루미나 기판에 스크린 프린팅기법에 의해서 제작되었고 $1200^{\circ}C$의 온도에서 소결하였다. 출발 물질인 BST의 저온 소결을 위해서 ZnBO를 첨가하였다. ZnBO가 1, 3, 5 wt% 첨가된 경우 소결온도가 $1200^{\circ}C$의 낮은 온도에서 소결되는 것을 확인했으며 ZnBO의 첨가랑이 증가함에 따라서 유전율은 감소하고 유전손실는 증가 하는 현상이 나타났다. 1, 3, 5 wt%의 ZnBO가 첨가된 (Ba,Sr)$TiO_3$는 각각 756, 624, 554의 유전율를 보였다. 또한 ZnBO의 양이 증가함에 따라서 누설전류가 감소되는 것을 확인하였고, ZnBO의 첨가가 grain의 성장과 density가 증가되어 누설전류의 양이 감소하게 되는 것으로 분석되었다.

  • PDF

Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal (잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발)

  • Choi, Kee-Young;Kim, Chan;Kim, Young-Pil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF

Design and Development of Thermoacoustic Refrigerator : II. Design Methodology and Experimental Results (열음향 냉동기의 설계 및 개발 : II. 설계 기법 및 실험 결과)

  • Park, Chul-Min;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.53-60
    • /
    • 1996
  • In this study, a design methodology for thermoacoustic refrigerator systems is proposed based on the thermal conduction and acoustic theories, and physical characteristics of an actual thermoacoustic refrigerator are investigated. Especially, the resonator is designed for minimizing the energy loss at cold end, and the position and length of the capillary stack are optimized in order to get a large temperature difference between hot and cold ends. Experimental results show that a maximun temperature difference of 22.7$^{\circ}$ and a temperature of 4.3$^{\circ}$C at cold end are obtained by supplying an electrical input of 33W without any thermal load at cold end.

  • PDF

A Study on the Basic Characteristics of Persistent Current Mode Operation for Small Scale High Temperature Superconducting Coil with No-insulation Winding Method (No-insulation 기법을 적용한 소용량 고온 초전도 코일의 영구전류 특성에 관한 연구)

  • Lee, T.S.;Lee, W.S.;Choi, S.;Jo, H.C.;Kim, H.J.;Lee, J.;Kang, J.S.;Kwon, O.J.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • This paper aims to evaluate the feasibility of using no-insulation High Temperature Superconducting (HTS) coil in persistent current mode system. A HTS coil in persistent current mode system usually includes one or more non-superconducting joints in its circuit. And the current decaying rate of the coil is affected by the resistance of joint in persistent current circuit. If the resistance of joint is large, decaying rate of the current drastically increases. Therefore, reducing the joint resistance of the HTS coil is very important in persistent current mode system. In this paper, the no-insulation HTS coil is suggested as a way to reduce the joint resistance with the embedded parallel contact resistance naturally made by no-insulation winding method. Two small coils are fabricated with insulation and no-insulation winding method, and persistent current mode system experiment of each coil is preformed and analyzed.

Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition (순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구)

  • Seo, Man-Su;Jeong, Sang-Kwon;Jung, Young-Suk;Ku, Dong-Hun;Ji, Dong-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Thermal Analysis of 3D Multi-core Processors with Dynamic Frequency Scaling (동적 주파수 조절 기법을 적용한 3D 구조 멀티코어 프로세서의 온도 분석)

  • Zeng, Min;Park, Young-Jin;Lee, Byeong-Seok;Lee, Jeong-A;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2010
  • As the process technology scales down, an interconnection has became a major performance constraint for multi-core processors. Recently, in order to mitigate the performance bottleneck of the interconnection for multi-core processors, a 3D integration technique has drawn quite attention. The 3D integrated multi-core processor has advantage for reducing global wire length, resulting in a performance improvement. However, it causes serious thermal problems due to increased power density. For this reason, to design efficient 3D multi-core processors, thermal-aware design techniques should be considered. In this paper, we analyze the temperature on the 3D multi-core processors in function unit level through various experiments. We also present temperature characteristics by varying application features, cooling characteristics, and frequency levels on 3D multi-core processors. According to our experimental results, following two rules should be obeyed for thermal-aware 3D processor design. First, to optimize the thermal profile of cores, the core with higher cooling efficiency should be clocked at a higher frequency. Second, to lower the temperature of cores, a workload with higher thermal impact should be assigned to the core with higher cooling efficiency.