• Title/Summary/Keyword: 장력법

Search Result 232, Processing Time 0.027 seconds

Comparative Study of Cable Tension Measurement Methods by In-situ Measurements on a Cable-stayed Bridge under Construction (시공 중 사장교 실측을 통한 케이블 장력 추정 기법 비교 연구)

  • Cho, Soo-Jin;Yim, Jin-Suk;Shin, Sung-Woo;Jung, Hyung-Jo;Yun, Chung-Bang;Wang, Ming.L.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.48-51
    • /
    • 2011
  • 사장교에서 케이블은 하중을 지지하는 주요 부재로, 케이블 장력은 사장교의 건전성과 안전도 평가에 있어서 매우 중요한 변수이다. 케이블 장력을 추정하기 위한 대표적인 방법으로는 로드셀을 이용한 직접법과 진동 계측 자료를 이용한 간접법 등이 있으며, 최근에는 자기장-응력 관계를 이용한 EM(Elasto-Magnetic) 센서 측정법이 개발되어 케이블 장력 추정에 적용되었다. 본 논문에서는 세 가지 장력 추정 기법을 실제 시공중인 사장교에 적용하여, 그 성능을 상호 비교하였다. 본 연구는 한국의 KAIST와 미국 Northeastern 대학교의 공동연구로 수행되었다. 대상 교량은 부산 화명동과 김해 초정리를 연결하기 위해 현재 건설중인 화명대교이다. 화명대교의 교량 형식은 2주탑 콘크리트 사장교 (주탑 경간장 270m, 총 사장교 구간장 500m)이며, 사장재로는 MS (Multi-Strand) 형 케이블이 사용되었다. 실험 당시 화명대교는 중앙경간의 폐합 후 선형관리를 위한 장력조정작업을 수행하였으며, 케이블 재긴장시의 정확한 장력관리를 위하여 로드셀을 이용한 Lift-off test방법으로 케이블의 장력을 측정하였다. 이와 동시에 두 개의 케이블을 대상으로 진동 가속도 센서와 EM 센서를 설치하고 장력 계측을 수행하였으며, 재긴장 단계별 장력 변화치를 지속적으로 계측하였다. 계측된 결과를 바탕으로 케이블 장력 추정 기법의 정확성 및 실교량에서의 활용성을 비교하였다.

  • PDF

Cable Tension Force Management Using Vibration Method at Cable Stayed Bridge Construction Stages (진동법을 이용한 사장교 시공단계별 케이블 장력관리)

  • Park, Yeon-Soo;Cheon, Dong-Ho;Cheon, Yang-Bae;Kang, Kyoung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 2005
  • Design and construction of long-span bridge are recently increasing by development of computer technology. Specially, cable stayed bridge and suspension bridge having cable component are representative of long-span bridge may do. Therefore, this paper a present a methodology for cable tension force monitoring in cable-stayed bridge under construction using acceleration data acquired by the vibration method. To improve accuracy construction, all stay cables are measured, according to 4-step construction stage and change of temperature.

Development of Wireless Tension Force Estimation Systemfor Cables of Long-span Bridges (장대교량의 케이블을 위한 무선장력계측시스템 개발)

  • Cho, Soo-Jin;Yun, Chung-Bang;Lynch, Jerome P.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.14-17
    • /
    • 2009
  • 본 연구에서는 장대교량에서 케이블의 장력을 간편하게, 그리고 자동적으로 추정할 수 있는 저비용 무선장력계측시스템을 개발하였다. 개발된 시스템은 크게 비용이 저렴하고 설치 및 관리가 용이한 무선 기반 하드웨어와 케이블에서 계측된 가속도 데이터로부터 장력을 자동으로 추정하여 주는 내장 (Embedded) 자동화 소프트웨어로 구성된다. 저비용 무선 기반 하드웨어는 연산능력을 가진 무선계측유닛과, 계측 신호개선을 위한 신호처리보드, 그리고 상용 MEMS 가속도계로 구성되었으며, 내장 자동화 소프트웨어는 계측된 신호의 주파수 분석을 위한 FFT 모듈, 케이블의 푸리에 스펙트럼으로부터 고유진동수를 자동으로 추출하기 위한 자동 피크 추출(Peak-picking) 알고리즘 모듈, 그리고 추출된 고유진동수를 활용하여 케이블의 장력을 추정하는 진동법 모듈로 구성되었다. 개발된 시스템의 검증을 위하여, 사장교의 케이블 축소모델을 제작하고 케이블 모델에 다양한 장력과 새그를 주어 진동실험을 수행하였다. 실험 결과, 개발된 시스템은 케이블 모델의 주파수응답스펙트럼으로부터 고유진동수를 정확하게 추정하였으며, 장력과 새그의 크기에 상관없이 매우 정확한 장력을 추정하였다.

  • PDF

Application of Back Analysis Technique Based on Direct Search Method to Estimate Tension of Suspension Bridge Hanger Cable (현수교 행어케이블의 장력 추정을 위한 직접탐색법 기반의 역해석 기법의 적용 )

  • Jin-Soo Kim;Jae-Bong Park;Kwang-Rim Park;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.120-129
    • /
    • 2023
  • Hanger cable tension is a major response that can determine the integrity and safety of suspension bridges. In general, the vibration method is used to estimate hanger cable tension on operational suspension bridges. It measures natural frequencies from hanger cables and indirectly estimates tension using the geometry conditions of the hanger cables. This study estimated the hanger cable tension of the Palyeong Bridge using a vision-based system. The vision-based system used digital camcorders and tripods considering the convenience and economic efficiency of measurement. Measuring the natural frequencies for high-order modes required for the vibration method is difficult because the hanger cable response measured using the vision-based system is displacement-based. Therefore, this study proposed a back analysis technique for estimating tension using the natural frequencies of low-order modes. Optimization for the back analysis technique was performed by defining the difference between the natural frequencies of hanger cables measured in the field and those calculated using finite element analysis as the objective function. The direct search method that does not require the partial derivatives of the objective function was applied as the optimization method. The reliability and accuracy of the back analysis technique were verified by comparing the tension calculated using the method with that estimated using the vibration method. Tension was accurately estimated using the natural frequencies of low-order modes by applying the back analysis technique.

A Study on Evaluation Method of Cable Tension for Railway Steel Composite Bridge (강철도 복합교량 케이블의 장력 평가기법에 관한 연구)

  • Choi, Jung-Youl;Lee, Soo-Jae;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.407-413
    • /
    • 2022
  • In this study, the empirical formula for evaluating cable tension based on long-term measurement for about 3 years according to temperature change was proposed by proving the correlation between the expansion joint displacement of the upper road bridge and the cable tension of the lower railway bridge. The tension prediction results using the empirical formula for tension evaluation each cables proposed in this study were found to be in good agreement with the cable tension using the vibration method within 3%. Therefore, it was analyzed that it could be applied together with the vibration method that was an experimental technique, to predict and evaluate the cable tension in serviced railway steel composite bridge. As a result of applying the estimated temperature calculated by the empirical formula for expansion proposed in this study to the empirical formula, it was analyzed that a high level of reliability could be secured when compared with the vibration method. Therefore, it is judged that the empirical formula for cable tension evaluation reflecting the estimated temperature proposed in this study can be used to predict the tension of cables according to climate change in the future and establish a maintenance plan.

Back Analysis Technique for the Estimation of Tension Force on Hanger Cables (역해석기법을 이용한 행어케이블의 장력 추정)

  • Kim, Nam-Sik;Park, Dong-Uk;Park, Yong-Myung;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.1-10
    • /
    • 2007
  • In general, the tension forces of hanger cable in suspension bridges play an important role in evaluating the bridge conditions. The vibration method, as a conventional one, has been widely applied to estimate the tension forces by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the fiequencies of short cables are severely sensitive to flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10 meters, were estimated through back analysis of the cable fiequencies measured from Gwang-An suspension bridge in Korea. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

A Study on Determination of Cable-Tension Using Unstrained-Length-Modification Method (초기길이 수정법(ULMM)을 이용한 케이블 장력 결정에 관한 연구)

  • Kong, Min Sik;An, Chan Hyeog;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • This study presents the ULMM(unstrained-length-modification method) to determine the cable tension consistent with target tension after arrangement of cable-members by controlling the unstrained length of cables. This method used to be shown to determine the exact unstrained length for cable-supported bridge with elastic catenary cable. The some verification examples show to determine the unstrained length that satisfies the target tension and to obtain the satisfactory result for cable-supported bridge. Accordingly this modification method of the unstrained length in this study is used to introduce the satisfactory target tension.

Estimation of Stay Cable Tension Using String Vibration Theory (현이론을 이용한 사장교 케이블 장력산정)

  • Park, Yeon-Soo;Choi, Sun-Min;Lee, Byung-Geun;Kim, Nin Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Estimate method of cable tension forces can be classified into direct method and indirect method. Direct method is not accuracy and it has many restrictions. Therefore, in generally Indirect method, vibration method using natural frequency, has been applied to estimate the tension forces. In this study, cable tensions of recently constructed cable-stayed bridge are measured using string vibration method and this result comparing with result of multiple mode method. To put it brief, the error of string vibration method is not exceeding 2% under 7th mode. Specially third and 4th mode error is not exceeding 1%. safety.

Numerical Simulation of Surface Tension-Dominant Multiphase Flows by Using Volume-Capturing Method and Unstructured Grid System (비정렬격자계와 체적포착법을 사용한 표면장력이 지배적인 다상유동 수치해석)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.723-733
    • /
    • 2011
  • A numerical method of the CSF(Continuum Surface Force) model is presented for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The application of the present method to a 2-D liquid drop problem is illustrated by an equilibrium and nonequilibrium oscillating drop calculation. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows.

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.