DOI QR코드

DOI QR Code

Application of Back Analysis Technique Based on Direct Search Method to Estimate Tension of Suspension Bridge Hanger Cable

현수교 행어케이블의 장력 추정을 위한 직접탐색법 기반의 역해석 기법의 적용

  • 김진수 (국토안전관리원 특수교관리실 여수분소) ;
  • 박재봉 (국토안전관리원 경영관리실 ) ;
  • 박광림 (국토안전관리원 특수교관리실 호남지사 ) ;
  • 박동욱 (부산대학교 지진방재연구센터 ) ;
  • 김성완 (부산대학교 지진방재연구센터 )
  • Received : 2023.09.25
  • Accepted : 2023.10.14
  • Published : 2023.10.31

Abstract

Hanger cable tension is a major response that can determine the integrity and safety of suspension bridges. In general, the vibration method is used to estimate hanger cable tension on operational suspension bridges. It measures natural frequencies from hanger cables and indirectly estimates tension using the geometry conditions of the hanger cables. This study estimated the hanger cable tension of the Palyeong Bridge using a vision-based system. The vision-based system used digital camcorders and tripods considering the convenience and economic efficiency of measurement. Measuring the natural frequencies for high-order modes required for the vibration method is difficult because the hanger cable response measured using the vision-based system is displacement-based. Therefore, this study proposed a back analysis technique for estimating tension using the natural frequencies of low-order modes. Optimization for the back analysis technique was performed by defining the difference between the natural frequencies of hanger cables measured in the field and those calculated using finite element analysis as the objective function. The direct search method that does not require the partial derivatives of the objective function was applied as the optimization method. The reliability and accuracy of the back analysis technique were verified by comparing the tension calculated using the method with that estimated using the vibration method. Tension was accurately estimated using the natural frequencies of low-order modes by applying the back analysis technique.

행어케이블의 장력은 현수교의 건전성과 안전성을 확인할 수 있는 주요 응답 중 하나이다. 일반적으로 공용 중인 현수교에서 행어케이블의 장력을 추정하기 위해 진동법이 주로 사용되고 있다. 진동법은 행어케이블에서 고유진동수들을 측정하고 행어케이블의 형상 조건을 이용하여 간접적으로 장력을 추정하는 방법이다. 이 연구에서는 영상계측시스템을 이용하여 팔영대교의 행어케이블에 대하여 장력을 추정하였다. 영상계측시스템은 측정의 편의성과 경제성을 고려하여 디지털 캠코더와 삼각대를 사용하였다. 영상계측시스템을 이용하여 측정된 행어케이블의 응답은 변위 기반이므로 진동법을 적용하기 위한 고차모드의 고유진동수는 측정하기 어려울 수 있다. 이 연구에서는 저차모드의 고유 진동수를 이용하여 장력을 추정할 수 있는 역해석 기법을 적용하였다. 역해석 기법은 현장에서 측정된 행어케이블의 고유진동수들과 유한요소해석을 이용하여 산정된 고유진동수들의 오차를 목적함수로 정의하여 최적화를 수행하였다. 최적화 방법은 목적함수의 편미분이 필요 없는 직접탐색법을 적용하였다. 역해석 기법을 이용하여 산정된 장력과 진동법을 이용하여 추정된 장력을 비교 분석하여 역해석 기법에 대한 신뢰도와 정확도를 확인하였다. 그 결과 역해석 기법을 적용하면 저차모드의 고유진동수를 이용하여도 신뢰성 있는 장력의 추정이 가능하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1012093).

References

  1. Ho, D. D., Lee, P. Y., Lee, S. Y., and Kim, J. T. (2012), Vibration-based Structural Health Monitoring of Full-Scale Cable-Stayed Bridges Using Wireless Smart Sensors, Journal of the Korean Society of Hazard Mitigation, 12(1), 75-81 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.1.075
  2. Nam, S. J., and Yhim, S. S. (2014), Evaluation of Tension of Stay Cable using MBM (Measurement-based Model), Journal of the Korea Institute for Structural Maintenance and Inspection, 18(3), 93-100 (in Korean). https://doi.org/10.11112/jksmi.2014.18.3.093
  3. Lee, J. W., Ro, S. K., Lee, Y. D., and Kang, B. C. (2013), Effect of Support Rotational Stiffness on Tension Estimation of Short Hanger Ropes in Suspension Bridges, Transactions of the Korean Society for Noise and Vibration Engineering, 23(10), 869-877. https://doi.org/10.5050/KSNVE.2013.23.10.869
  4. Kim, S. W., Cheung, J. H., and Kim, S. D. (2018), Cable Tension Measurement of Long-span Bridges Using Vision-based System, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 115-123 (in Korean).
  5. Shimada, T. (1994), Estimating Method of Cable Tension from Natural Frequency of High Mode, Proceedings of the Japan Society of Civil Engineers, 501(1-29), 163-171. https://doi.org/10.2208/jscej.1994.501_163
  6. Zui, H., Shinke, T., and Namita, Y. (1996), Practical Formulas for Estimation of Cable Tension by Vibration Method, Journal of Structural Engineering, 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651)
  7. Lee, H. J. (2016), Study on the Efficient Application of Vision-Based Displacement Measurements for the Cable Tension Estimation of Cable-Stayed Bridges, Journal of the Korea Academia-Industrial Cooperation Society, 17(9), 709-717 (in Korean). https://doi.org/10.5762/KAIS.2016.17.9.709
  8. Feng, D., Scarangello, T., Feng, M. Q., and Ye, Q. (2017), Cable Tension Force Estimate Using Novel Noncontact Vision-based Sensor, Measurement, 99, 44-52. https://doi.org/10.1016/j.measurement.2016.12.020
  9. Shin, H. S., Park, K. T., and Jun, J. T. (2012), Measurement of Cable Tension by Laser Vibrometer and Applicability Evaluation of Non-contact Vibration Measurement Method, Journal of the Korean Institute of Plant Engineering, 17(3), 25-33 (in Korean).
  10. Kim, S. W., Park, D. U., Kim, J. S., Park, S. S., and Park, J. B. (2023), Tension Measurement of Stay Cables in Consideration with Image Including Vehicle, Journal of the Korea Institute for Structural Maintenance and Inspection, 27(2), 58-66 (in Korean).
  11. Jeon, Y. S., and Yang, H. S. (2004), Development of a back analysis algorithm using FLAC, International Journal of Rock Mechanics and Mining Sciences, 41(Supplement 1), 447-453. https://doi.org/10.1016/j.ijrmms.2004.03.081
  12. Hanby, V. I., and Angelov, P. P. (2000), Application of Univariate Search Methods to the Determination of HVAC Plant Capacity, Building Services Engineering Research and Technology, 21(3), 161-166. https://doi.org/10.1177/014362440002100303
  13. Irvine, H. M. (1981), Cable Structures, Cambridge: The MIT Press.