• Title/Summary/Keyword: 자체소음 저감

Search Result 30, Processing Time 0.038 seconds

An Experiment on Reduction of Infrasonic Underwater Self-Noise (초저주파 대역 수중 자체소음 저감에 관한 실험 연구)

  • Lee, Seong-Wook;Lee, Yong-Kuk;Kim, Seong-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • The effects of screening hydrophones with open-cell foams for reduction of the infrasonic self-noise induced by the flow around hydrophones are investigated by at-sea experiment. Test results of the 10 ppi polyurethane open-cell foams with different thickness show that the foams of 1 cm and 3 cm thickness reduce the flow-induced self-noises up to 20 dB and 28 dB at the frequency band of 2-10 Hz, respectively.

교통소음 저감을 위한 방음벽상단 소음저감장치

  • 김영찬;장강석
    • Journal of KSNVE
    • /
    • v.12 no.6
    • /
    • pp.414-422
    • /
    • 2002
  • 도로와 인접지역 사이에 장애물이 없으면, 소리는 소음원에서 수음영역으로 직접적으로 전달된다. 그러나 소음원과 수음영역 사이에 장애물이 있는 경우에는 소음원에서 발생한 소음은 장애물의 상단을 회절하여 수음영역으로 도달하는 회절경로와 장애물 자체를 통과하여 전달되는 투과경로, 장애물에 의한 반사경로 등 여러 전파 경로로 나뉘어 전달된다. 그러나 일반적인 방음벽은 벽 재료의 투과손실을 크게 하므로 회절감쇠 이외의 영향은 거의 없게 설계된다. 따라서 방음벽에 의한 소음 감쇠량은 방음벽의 높이(회절음의 영향)에 의해 결정되는 회절감쇠가 대부분을 차지하게 된다.(중략)

방음벽의 효과산정 및 설치현황

  • 정일록
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.199-201
    • /
    • 1993
  • 소음공해에 대한 대책은 크게 나누어 소음발생원의 음량을 원천적으로 저감시키는 저소음화대책, 소음 전파경로상에서의 차음대책, 피해자의 거주공간 자체에 대한 방음대책 등을 들 수 있다. 여기서는 교통소음과 같은 선음원에 대한 전파경로상의 차음방법으로 가장 보편화되어 있는 방음벽에 대해서, 그 효과산정 및 설치현황 등을 개략적으로 소개하고자 한다.

  • PDF

건물 신축 공사장 소음 저비용 저감 방안

  • 최재남;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.463-466
    • /
    • 2002
  • 건설현장의 특성상 굴착공사는 필수공정이고 비록 말뚝공사가 없다할지라도 암반굴착 등 진동소음 발생여지는 언제나 존재하고 있다고 할 수 있다 이에 대한 국부적인 암반발파, 파쇄에 따른 소음감소 또한 큰 문제를 야기할 수 있다. 건설현장 자체적으로 민원 발생에 대비하여 인접 주택 지점에서 소음 계측을 하고 허용값 초과 여부를 판단하는 실행을 하고 있으나 주민이 느끼는 체감 소음은 조금 다를 수도 있어서 민사소송으로까지 확대되어 현장경영 및 공정에 큰 타격을 가하고 회사 이미지 실추로까지 이어질 수 있고 막대한 보상비 지급이 뒤따를 수도 있는 상태로까지 확대될 수 있다.(중략)

  • PDF

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics (능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석)

  • Kim, Do-Hyung;Kang, Hee Jung;Wie, Seong-Yong;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.855-864
    • /
    • 2013
  • Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.

Evaluation and improvement of external electric blinds through field application (실증 적용을 통한 외부 전동블라인드의 성능 평가 및 개선 방안)

  • Min-Woo Kang;Hee-Dong Lee;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.181-188
    • /
    • 2023
  • In a typical living space, windows are directly exposed to the external noise environment. The best way to reduce outside noise is to block it from the outside, not the inside. Exterior blinds for blocking sunlight are commercialized in various ways. However, it has not yet been actively utilized in Korea. In the previous study, an experiment was conducted in an accredited laboratory to verify the sound insulation performance of an external motorized blind manufactured for shading. And it was verified that there is a sound insulation performance of 6 dBA compared to the reduction performance of a general window. In this study, we tried to confirm the reduction performance by applying the sound insulation performance of external electric blinds to windows in actual living spaces. In addition, an improvement plan was sought to increase the effective noise reduction performance. As a result of the measurement, the reduction performance of the external motorized blind itself was insufficient at the level of 1 dBA to 3 dBA. However, additional reduction performance of the 2 dBA level was confirmed by filling the gap between the blind slits.

A Study on the Installation Time and Method of Soundproofing Facilities According to Tunnel Blasting Work (터널발파작업에 따른 방음시설의 설치시기와 방법에 대한 고찰)

  • Won, Yeon-Ho;Son, Young-Bok;Jeong, Jai-Hyung
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • A blasting noise generated by blasting work, which is a kind of shock-noise, influences the human body. A civil appeal due to blasting noise causes work discontinuance and downsizing of a blasting scale. Most of soundproof facilities for reducing a blasting noise is installed at each working spot by itself and the degree of a noise reduction is very low. The aim of this study is to recommend a technology on noise reduction considering the method and material of soundproof facilities. As the first study step to acquire basic data, investigations on the installation time, installation method, and material of the soundproof facilities have been done at about 20 tunnel work spots such as railroad tunnel, road tunnel, tunnel for electric power.

A Study on the Soundproofing Plate Techniques for Noise Reduction of Power Transformers (전력용 변압기 소음저감을 위한 차음판 기술에 관한 연구)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Kim, Jung-Chon;Kim, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.47-55
    • /
    • 2008
  • According to the increase of power demand and expansion of downtown, it is necessary to install transformers additionally in operating substations and construct substations in residential area. But the public complaint has been increased due to the transformer noise of the substation. KEPCO has used a vibration preventing pad, various soundproof walls and an enclosure to transformers in outdoor substations, and a soundproof door, shutter and wind-path soundproof equipment in indoor substations to block the sound propagation from the transformers. But these noise reduction methods are not satisfied. It should be considered to reduce transformer noise itself. To shut out sound emitted from transformers, we developed a soundproof technology that wall up reinforcing bar by steel sheet. For the practical application of it, we analyzed the vibration characteristics of a transformer tank and reduction of noise according to soundproof plate. As a result, it is confirmed that the technology can reduce 11 [dB] of transformer noise.