DOI QR코드

DOI QR Code

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics

능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석

  • Received : 2013.05.03
  • Accepted : 2013.06.11
  • Published : 2013.11.01

Abstract

Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.

능동 탭은 BVI 소음 저감을 위한 능동제어 기술 중 하나이며, 이를 이용한 소음 저감효과에 대한 해석은 기술 개발에 있어서 매우 중요한 과정의 하나이다. 능동 탭의 소음저감 성능 분석을 위하여 모델 로터시스템에 대한 구조 설계를 수행하고 CFD 해석을 통해 에어포일 공력 데이터를 생성하였으며, 이를 이용하여 통합해석 프로그램인 CAMRAD II 모델을 구성하였다. 하강 비행 상태에서 능동 탭을 HHC 방법으로 작동할 경우 로터에서 발생되는 공력 하중을 CAMRAD II를 이용하여 계산하고, 이에 따른 BVI 소음 변화를 자체 소음해석 프로그램으로 계산하였다. 능동 탭의 작동 길이 및 제어 위상의 변화에 따른 소음해석 결과 최대 -3.3dB의 BVI 소음 저감 효과를 얻을 수 있었다.

Keywords

References

  1. International Civil Aviation Organization, 2008, International Standards and Recommended Practices, Annex 16 to the Convention on International Civil Aviation, Volume I Aircraft Noise, Chapter 8, 11.
  2. Kessler, Ch., "Active Rotor Control for Helicopters: Motivation and Survey on Higher Harmonic Control," 36th European Rotorcraft Forum, Sep. 7-9, 2010, Paris, France.
  3. Gervais, M. and Gareton, V., "Analysis of Main Rotor Noise Reduction Due to Novel Planform Design - The Blue $Edge^{TM}$ Blade," 37th European Rotorcraft Forum, Sep. 13-15, 2011, MAGA Gallarate, Italy.
  4. Johnson, W., CAMRAD II, Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics, Release 4.8, Vol. VI, Palo Alto, CA, 2009.
  5. Kobiki, N., "Performance Evaluation for Active Tab installed in Mach scaled Model Blade," 37th European Rotorcraft Forum, Sep. 13-15, 2011, MAGA Gallarate, Italy.
  6. Kim, D.-H., Kim, S.-H., and Han, J.-H., "Design of KUH Main Rotor Small-scaled Blade," Aerospace Engineering and Technology, Vol. 8, No, 1, July 2009, pp. 32-41.
  7. Johnson, W., "Rotorcraft Aerodynamics Models for a Comprehensive Analysis," 54th AHS Annual Forum, May 20-22, 1998, Washington, DC.
  8. Norman, T. R., et al., "Full-scale Wind Tunnel Test of a UH-60 Individual Blade Control System for Performance Improvement and Vibration, Loads, and Noise Control," AHS 65th Annual Forum, Grapevine, Tx, May 27-29, 2009.
  9. Wie, S.-Y., Im, D.-K., Lee, D.-J., Kwon, J.-H., Park, S.-H., Kim, S.-B., Chung, K.-H., and Kim, J.-M., "Aerodynamics and Noise of AH-1G Rotor in BVI condition," KSAS 2008 Fall Conference, pp. 158-162.
  10. Schmitz, F. H., Rotor Noise, Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 1: Noise Sources, Harvey H. Hubbard, ed., NASA RP-1258, Vol.1, WRDC TR-90-3052, 1991, pp.102-106.

Cited by

  1. Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion vol.43, pp.6, 2015, https://doi.org/10.5139/JKSAS.2015.43.6.557
  2. Test and Simulation of an Active Vibration Control System for Helicopter Applications vol.17, pp.3, 2016, https://doi.org/10.5139/IJASS.2016.17.3.442