• Title/Summary/Keyword: 임플랜트-지대주 연결부

Search Result 8, Processing Time 0.018 seconds

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

Detection of periodontal disease related bacteria from the implant-abutment interface in oral cavity (구강내 임플랜트-지대주 연결부에서 치주질환관련 세균의 검출)

  • Han, Meung-Ju;Chung, Chae-Heon;Kim, Hee-Jung;Kook, Joong-Ki;Yoo, So-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Statement of the problem: Implant systems result in gaps and cavities between implant and abutment that can act as a trap for bacteria and thus possibly cause inflammatory reactions in the peri-implant soft tissues. Purpose: Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans, related to implant-abutment interface microleakage. Material and methods: Samples were taken from 27 subjects with sterilized paper points and were transported in $1{\times}PBS$. The detection of periodontopathogens were performed by polymerase chain reaction with species-specific primers based on 16S rDNA. Results: Our data showed that the detection rate of P. gingivalis and P. intermedia in implant fixture was 59% and 82% in patients respectively. Detection rate of P. gingivalis and P. intermedia in implant crevice was 44% and 82% in patients. Detection rate of P. gingivalis and P. intermedias in tongue was 82% and 82% in patients. Conclusion: Current implant systems cannot safely prevent microbial leakage and bacterial colonization of the inner part of the implant.

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

The influence of Collar design on peri-implant marginal bone tissue (Collar design이 임플랜트 주위 변연골 흡수에 미치는 영향)

  • Kim, Jee-Hwan;Jung, Moon-Kyou;Moon, Hong-Suk;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Statement of problem: Peri-implant marginal bone loss is an important factor that affects the success of implants in esthetics and function. Various efforts have been made to reduce this bone loss by improving implant design and surface texture. Previous studies have shown that early marginal bone loss is affected by implant neck designs. Purpose: The purpose of this study was to examine the influence of laser microtexturing of implant collar on peri-implant marginal bone loss. Materials and methods: Radiographical marginal bone loss was examined in patients treated with implant-supported fixed partial dentures. Marginal bone level was examined with 101 implant fixtures installed in 53 patients at three periods(at the time of implantation, prosthetic treatment and 6-month after loading). Four types of implants were examined. The differences of bone loss between implants(ITI standard) with enough biologic width and implants(ITI esthetic plus, Silhouette IC, Silhouette IC Laser-$Lok^{TM}$) with insufficient biologic width have been compared. Resorption angles were examined at the time of prosthetic delivery and 6-month after loading. Results and Conclusion: Within the limitation of this study, the following results were drawn. 1. The marginal bone loss of ITI standard and Silhouette IC Laser-$Lok^{TM}$ was less than that of ITI esthetic plus and Silhouette IC(P<0.05). The marginal bone loss between ITI standard and Silhouette IC Laser-$Lok^{TM}$ had no significant statistical difference(P>0.05). There was no significant statistical difference between marginal bone loss of ITI esthetic plus and Silhouette IC(P>0.05). 2. There was no significant difference in marginal bone loss between maxilla and mandible(P>0.05). 3. There was no significant difference in resorption angle among four types of implants(P>0.05). The marginal bone of implants with supracrestal collar design of less than that of biologic width had resorbed more than those with sufficient collar length. The roughness and laser microtexturing of implant neck seem to affect these results. If an implant with collar length of biologic width, exposure of fixture is a possible complication especially in the anterior regions of dentition that demand high esthetics. Short smooth neck implant are often recommended in these areas which may lack the distance between microgap and the marginal bone level. In these cases, the preservation of marginal bone must be put into consideration. From the result of this study, it may be concluded that laser microtexturing of implant neck is helpful in the preservation of marginal bone.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.