• Title/Summary/Keyword: 일체형 바닥구조

Search Result 9, Processing Time 0.029 seconds

An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete (경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가)

  • Lee, Seong-Hui;Bang, Jung-Seok;Won, Yong-An;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2011
  • A recent development of seismic design, which is required among environmentally friendly members, increased the concern on light-weight concrete. Extending around the building, the structural design which is applied for light-weight concrete has been increased. This study therefore evaluates the bending resistance and the shear resistance involved using four specimens that were manufactured and tested. The parameters used in this study exist. This study investigates the structural performance of composite slab using light-weight concrete with KCI (2007).

Evaluation of structural performance in integrated precast decks for a rapid construction (급속 시공을 위한 일체형 프리캐스트 바닥판의 구조성능 평가)

  • Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • In this study we developed an integrated precast concrete decks for a rapid construction. The structural performance in the integrated precast bridge decks is evaluated by real-scale test bed and detailed finite element analyses. The numerical analysis results were compared with the experimental data from a real-scaled single-span precast/prestressed concrete bridge decks under truck loading. Parametric studies are focused on the various effects of external loads on the structural behavior for different locations and measuring points on the precast bridge decks. The assessment in this study indicates that the integrated precast bridge decks show an excellent structural performance as expected.

Development of Plastic Plate Under Ground (지하실 바닥용 플라스틱 배수판 개발)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1083-1085
    • /
    • 2010
  • 본 연구는 지하의 바닥층에 배수로를 확보하기 위한 배수판에 관한 것으로, 특히 배수판에 형성된 인터록킹 돌기가 다른 배수판에 형성된 인터록킹 소켓에 안착되면서 배수판 간의 연결부위가 상호 미로형의 인터록킹 구조를 이루어 배수판의 하측으로 시멘트 몰타르가 유입됨을 배제하여 원활한 배수로를 확보함은 물론 상기 인터록킹 소켓 및 인터록킹 돌기는 요철형의 견고한 구조로 이루어져 뒤틀림, 변형 등의 하자발생이 없어 공사의 품질을 높일 수 있도록 하는 지하바닥용 배수판에 관한 것이다. 개발한 배수판은 상부면에 격자형으로 콘크리트 타설홈이 형성된 다수의 지지포스트가 하측으로 돌출 형성된 배수판과; 상기 배수판의 둘레면 가운데 인접하는 양면에 일체로 형성되고 상부에 안착요홈이 형성된 인터록킹 소켓과; 상기 인터록킹 소켓과 대응하는 양면에 일체로 형성되고, 다른 배수판에 형성된 인터록킹 소켓에 안착되면서 미로형의 인터록킹 연결구조를 이루는 인터록킹 돌기의 유기적인 결합구성으로 이루어진다.

  • PDF

Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers (콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음)

  • Mun, Dae Ho;Oh, Yang Ki;Jeong, Gab Cheol;Park, Hong Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

Evaluation on Structural Performance of Joint with Asymmetric Ribbed Connection Details used in Precast Bridge Deck (비대칭 격벽단면을 갖는 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Chung, Chul-Hun;Byun, Tae-Kwan;Kim, In-Gyu;Shin, Dong-Ho;Lee, Han-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • A precast concrete deck system is considered an effective alternative in terms of its rapid construction and quality assurance than cast-in-place concrete deck. In precast concrete deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This research proposes more improved precast deck system with asymmetric ribbed connection details improving the disadvantage of previous precast deck system such as difficulties in assembling precast decks. And in this precast deck system, a separate form is not required at the site because partition wall of the precast decks serves as a form when placing non-shrinkage mortar in the connection part of the precast decks. Therefore, rapid construction is possible. Flexural performance is verified through load tests considering main parameter such as rib length in the precast deck connection. From the test results, it can be inferred that the development of the rebar and prevention of adhesion failure in the partition wall of the precast deck system are important factors in securing the flexural performance. Although the structural performance of the precast deck system with asymmetric connection details is gradually reduced as the rib length in the precast deck connection increases, the proposed precast deck system shows sufficient flexural performance and can be applied to the connection part of precast decks effectively.

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

An Experimental Study on the Application of P.C.L-layer on the Railroad Bridge used to Latex Modified Concrete (Latex Modified Concrete를 이용한 철도교량의 PCL층 적용에 관한 실험적 연구)

  • Lee, Sun-Gyu;Choi, Sung-Min;Sung, Sang-Kyung;Park, Sung-Ki;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.757-760
    • /
    • 2008
  • The latex modified concrete was applied to baseplate of road bridge after 2000 year. This is in the limelight of stability to be missing problems. But, The baseplate of railroad bridge being experience to difficulty that searching method substituted for bridge waterproofing. In this study, I would like to application on P.C.L layer of railroad bridge using the property and merit of L.M.C. As a result performance test about six item, L.M.C was confirmed no problem to performance and application of bridge waterproofing.

  • PDF

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.