DOI QR코드

DOI QR Code

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block

프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증

  • Park, Sangki (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jaehwan (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung, Kyu-San (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Seo, Dong-Woo (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Ki-Tae (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, Hyun-Ock (J EnC Ltd.)
  • 박상기 (한국건설기술연구원 구조연구본부) ;
  • 김재환 (한국건설기술연구원 구조연구본부) ;
  • 정규산 (한국건설기술연구원 구조연구본부) ;
  • 서동우 (한국건설기술연구원 구조연구본부) ;
  • 박기태 (한국건설기술연구원 구조연구본부) ;
  • 장현옥 (제이이앤씨(주))
  • Received : 2022.08.29
  • Accepted : 2022.09.16
  • Published : 2022.09.30

Abstract

In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

국내에서는 I형 거더의 장경간화를 위한 수단으로써 U형 거더 개발을 시도하였으나, 포스트텐션 긴장방식에 따라 큰 자중으로 인하여 30 m이하 철도교 적용 사례가 대표적이며, 도로교는 시공 편의성과 보급성 논리에 따라 U형 거더의 적용 사례는 많지 않다. 본 연구는 이러한 포스트텐션 방식에 제한을 두지 않고 프리텐션 방식을 적용하여 단면 감소에 따른 자중 감소와 사용재료 절감을 유도하고자 한다. 또한, U형 거더 내부 반력대를 이용한 현장 프리텐션 긴장방법을 적용하고자 한다. 프리스트레스트 콘크리트 U형 단면 거더 교량은 콘크리트 바닥판 슬래브와 합성단면으로 구성된다. 단면이 폐합되어 개방형 단면인 PSC I형 대비 저항 강성 등의 구조적 성능향상과 제작 및 가설 단계에서 시공의 안전성 증대, 그리고 자중 경감에 기인하는 형고비 감소와 교량의 미적 경관성 확보가 가능하여 매우 효율적이고 경제적인 교량이다. 이로 인하여 고품질의 공장제작 부재와 현장에서 일체 타설로 효율적인 시공이 가능할 것으로 기대된다. 본 논문에서는 프리텐션 현장 긴장 방식 소개 및 긴장을 위한 정착블럭의 해석적 성능 검증에 대한 내용을 수록하였다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Civil Engineering and Building Technology (Project Number : 20220102), granted financial resource from the Ministry of Science and ICT, Republic of Korea.

References

  1. ABAQUS (2021). ABAQUS V2021 User's Manual. Velizy-Villacoublay: Dassault System.
  2. Bae, K.-M., Min, K.-H., Lee, C.-O., and Lim, N.-H. (2017). Analysis and Improvement of Long-term Deflection of PSC I Girder for Railway Bridges. Journal of the Korean Society of Hazard Mitigation. 17(5): 9-15. https://doi.org/10.9798/KOSHAM.2017.17.5.9
  3. Bridge Technology Inc. (2018). Development and Commercialization of Slab Integrated Low Height PSC-I Girder Upper Bridge System using Long Span Arch-Deck Panel. Final Report of Korea Agency for Infrastructure Technology Advancement (16TBIP-C111156-01). Anyang: KAIA.
  4. Elnashai, A. S. and Izzuddin, B. A. (1993). Modeling of Material Non-linearities in Steel Structures Subjected to Transient Dynmaic Loading. Earthquake Engineering and Structural Dynamics. 22: 509-532. https://doi.org/10.1002/eqe.4290220604
  5. Grassl, P., Lundgren, K., and Gylltoft, K. (2002). Concrete in Compression : A Plasticity Theory with a Novel Hardening Law. International Journal of Solids and Structures. 39: 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
  6. Grassl, P. and Jirasek, M. (2006a). Damage-plastic Model for Concrete Failure. International Journal of Solids and Structures. 43: 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
  7. Grassl, P. and Jirasek, M. (2006b). Plastic Model with Non-local Damage Applied to Concrete. International Journal for Numerical and Analytical Methods in Geomechanics. 30: 71-90. https://doi.org/10.1002/nag.479
  8. Kim, J.-H., Park, K.-H., Joo, B.-C., Lee, S.-Y., Jin, H.-J., Ko, S.-G., Kang, S.-H., and Kim, D.-Y. (2017). Development of Improved PSC Girder Bridge with Precast Core. Internal Research Project Report of Korea Institute of Civil Engineering and Building Technology (KICT2017-106). Goyang: KICT.
  9. Kim, K.-S. and Wang, I.-H. (2009). Development of New Type PSC Beam Girder Bridges in Korea. Journal of the Korea Concrete Institute. 20(3): 26-33.
  10. Koo, M.-S., Kim, H.-H., and Jung, Y.-D. (2005). A study of Continuous PSC Bridge with a Reinforcement Steel Plate. Proceedings of the Computational Structural Engineering Institute of Korea 2005 Annual Conference. 2005(Spring): 422-429.
  11. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B. and Karimzade, K. (2017). Simplified Damage Plasticity Model for Concrete. Structural Engineering International. 27(1): 68-78. https://doi.org/10.2749/101686616X1081
  12. MOLIT (2022a). Road Bridge and Tunnel Status Report, Ministry of Land, Infrastructure and Transport. Sejong: MOLIT.
  13. MOLIT (2022b). Budget Status of Land, Infrastructure and Transport Report, Ministry of Land, Infrastructure and Transport. Sejong: MOLIT.
  14. Shin, H.-S. (2005). PSC Beam Fall Prevention Method. Road&Transport. 99(Spring): 93-107.