• Title/Summary/Keyword: 인 흡착

Search Result 407, Processing Time 0.026 seconds

Assessment of Pollutant Loads from Alpine Agricultural Practices in Nakdong River Basin (낙동강 수계 고령지 밭의 비점오염 물질 유출 특성 조사 및 단위 유출량 산정)

  • Joo, Jin-Ho;Yang, Jae-E.;Ok, Yong-Sik;Oh, Sang-Eun;Yoo, Kyung-Yeol;Yang, Su-Chan;Jung, Yeong-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • To assess pollutant loads in Nakdong river from highland agriculture in Kyungbuk province we. analyzed water qualities such as BOD, COD, T-N, T-P and SS in year 2005. BOD values in rainy period (June and July) were relatively higher than those in dry period, and those in 4 sites among 17 sites ranged from 10.71-19.25 mg/L which exceeded water criteria (8 mg/L) for agricultural use. COD values showed similar trends like BOD values. These trends might be caused by outflow of nutrients applied in agricultural lands. T-N content ranged from 0.1 to 14 mg/L. Those in lower reaches of stream were greater in those in upper stream. Compared to T-N contents during non-farming season, T-N content in farming season were higher. These phenomenon could be due to continuous input of nutrients from small watercourses. Averaged T-P content in lower stream during farming season was 0.4 mg/L, which was eight times higher than the limiting level for algae occurrence (0.05 mg/L). BOD, T-P, T-N loads from alpine agricultural practices were 12.25 $kg/km^2{\cdot}day$, 0.55 $kg/km^2{\cdot}day$ and 32.35 $kg/km^2{\cdot}day$, respectively. These values were greater than those from forestry. Therefore, Best management Practices (BMP) for alpine agricultural field are needed to reduce pollutant loads in Nakdong river.

Effect of Microbial Phytase in Low Phosphorus and Calcium Level Diet on the Performance and Nutrient Digestibility in Laying Hens (인과 칼슘의 수준이 낮은 산란계 사료 내 미생물 Phytase의 첨가가 생산성 및 영양소 소화율에 미치는 영향)

  • Min B.J.;Kwon O.S.;Lee W.B.;Son K.S.;Hong J.W.;Yang S.J.;Moon T.H.;Kim I.H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This Study was conducted to investigate the effects of microbial phytase in low phosphirus and calcium level diet on the performance and nutrient digestibility in laying hens. One hundred ninety two, 50 wks old, ISA brown commerical layers were used for 12 weeks feeding trial after 7-d adjustment period. Four dietary treatments included CON(control; Co.), P2 ($0.06\%$ Natuphos, BASF) and P3 ($0.06\%$ PHOSMAX, GENOFOCUS). Ca and available P concentrations of P1, P2 and P3 were 90 and $50\%$ of NRC recommecdations to accentuate difference in response to phytase availability. In whole period, egg production was not affected by treatments. At 12 weeks, egg weight was significantly increased in adding phytase treatments (P<0.05). Egg shell thickness was increased in P1, P2 and P3 treatments compared with control (P<0.05) at 9 weeks. Ca concentration of serum tended to decrease in P1 treatment without significant difference (P>0.05). Ca and P concentrations of tibia were higher in layers fed dietary phyrase than those fed control diet without significant difference (P>0.05). Digestibilities of DM, N and ash were improved in P1 treatment compared with P2 and P3 treatments (P<0.05). Ca and P digestibilities were the highest in P2 treatment (P>0.05), but was not significant difference between control and P1 treatments.

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Study on the relationship between the potassium activity ratio of paddy soils and potassium uptake by rice plant (답토양(沓土壤)의 가리(加里) Activity ratio와 수도(水稻)의 가리(加里) 흡수(吸收) 특성(特性)에 관(關)한 연구)

  • Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.4
    • /
    • pp.223-233
    • /
    • 1976
  • The potassium equilibrium activity ratio ($AR^k_e$) and energies of exchange for replacement of ca+Mg by K ($E_k$) were measured for seven paddy soils to investigate their correlations with the exchangeable K (Kex) and uptake of K at different growth stages of rice plant. It was found that $AR^k_e$ had highly significant correlations at 1% level with uptake of K at maximum tillering, heading and harvesting stages, and also with Kex in soils at maximum tillering stage. The larger $AR^k_e$ of soils, the more uptake of K by rice plant. The fact indicates that uptake of K by the plant can be characterized in terms of $AR^k_e$ or energy of exchange of soils. In aspect of energy of exchange, higher uptake of K and yield of grain were observed from -2500 to -3000 calories per chemical equivalent, representing suitable balances between K and Ca+Mg in soils. Low uptake of K was observed at the energies of exchange below -3500 calories per chemical equivalent, which were prevalent in the ordinary acidic soils. From the correlations between energy of exchange and Kex, it can be concluded that at least 0.37 meq. of exchangeable K should be existed in 100g of dried acidic soil to keep suitable balances of K and Ca+Mg. The result shown that application of K adsorbed zeolite to paddy soils increased $AR^k_e$ and consequently brought about higher K uptake and grain yield. Therefore, a reasonable way recommended to get good balance of exchangeable K in the soil is applying 1.7 tonns of K adsorbed zeolite containing 60kg $K_2O$ per hectare.

  • PDF

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).