DOI QR코드

DOI QR Code

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate

코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향

  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 여경환 (국립원예특작과학원 시설원예연구소) ;
  • 최수현 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소) ;
  • 김승유 (국립원예특작과학원 시설원예연구소) ;
  • 이성찬 (국립원예특작과학원 기술지원과) ;
  • 강남준 (경상대학교 원예학과)
  • Received : 2017.08.07
  • Accepted : 2018.01.23
  • Published : 2018.01.31

Abstract

Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

수경재배에서는 근권내 양분의 집적 정도는 급액의 양과 밀접한 관계를 가지기 때문에 급액의 양(횟수)이 토마토의 생육과 수량에 미치는 영향이 크다. 따라서 본 시험에서는 코이어를 이용한 토마토 장기 수경재배에 급액량이 근권의 무기이온에 미치는 영향을 구명하고자 하였다. 적산일사량을 기준으로 급액량을 조절하였으며 생육시기별로 적산일사량 설정치를 변경하며 급액량을 4수준으로 처리하였다. 처리별 매일의 급액량과 배액량을 조사하였고 배액율을 계산하였다. 급액량이 많을수록 토마토의 수분 흡수량은 증가하는 경향이었다. 그러나 High 처리구는 2월과 3월에 Medium high 처리구에 비하여 수분 흡수가 감소하였다. 월별 평균 급액량과 배액율을 계산하여 배액율이 20-30%되는 급액 구간으로 1월은 $120-140J/cm^2$, 2월은 $100-120J/cm^2$, 3월은 $80-100J/cm^2$, 4월은 $70-90J/cm^2$, 5월은 $60-75J/cm^2$로 적정한 범위를 정할 수 있었다. 급액량이 많을수록 이온들의 농도가 낮아서 근권의 양분집적을 상당 부분 방지할 수 있었는데 양분을 흡착하는 코이어 배지의 특성 때문에 배액율이 20-30%인 경우 근권의 무기이온의 농도는 상당히 높았다. 그런데 P와 K는 처리에 관계없이 배액에서 급액농도 보다 낮아지는 경우가 발생하였으며, 급액량이 많은 처리에서도 Mg와 S가 가장 잘 집적되는 이온이었다. 일사량이 적은 시기에는 급액량에 따른 배액내 무기이온의 농도는 큰 차이를 나타내지 않았으나, 일사량이 많은 시기에는 급액량이 적을수록 배액의 무기이온의 농도가 높았다. 특히, 3월 이후에는 급액량 조정만으로는 배액의 이온농도 상승을 방지하기 어려워 우선적으로 급액 EC를 낮춰 근권에 양분이 집적되는 것을 막을 필요가 있었다.

Keywords

References

  1. An, C.G., Y.H. Hwang, H.S. Yoon, H.J. Hwang, G.M. Shon, G.W. Song, and J.B. Ryong. 2005. Effect of drain ratio during fruiting period on growth and yield of sweet pepper (Capsicum annuum 'Jubilee') in rockwool culture. J. Kor. Soc. Hort. Sci. 23(3):256-260.
  2. An, C.G., Y.H. Hwang, G.M. Shon, C.S. Lim, J.L. Cho, and B.R. Jeong. 2009. Effect of irrigation amount in rockwool and cocopeat substrates on growth and fruiting of sweet pepper during fruiting period. Kor. J. Hort. Sci. Technol. 27(2):233-238.
  3. Ao, Y., M. Sun, and Y. Li. 2007. Effect of organic substrates on available elemental contents in nutrient solution. Bioresour. Technol. 99:5006-5010.
  4. Bohme, M. 1995. Effects of closed systems in substrate culture for vegetable production in greenhouses. Acta Hort. 396:45-54.
  5. Boivin, C. 1990. La recirculation des solutions nutritives en culture sur laine de roche. Cahier des confences. journ& d'infonnation sur les cultures abrites. p:76-80.
  6. Chang, Y.H., Y.H. Hwang, C.G. An, H.S.Yoon, J.U. An, C.S. Lim, and G.M. Shon. 2012. Effects of non-drainage hydroponic culture on growth, yield, quality and root environments of muskmelon (Cucumis melo L.). 2012. Journal of Bio-Environment Control, 21(4):348-353. https://doi.org/10.12791/KSBEC.2012.21.4.348
  7. Gericke, W.F. 1929. Aquaculture ameans of crop production. Amer. J. Bor. 16:826.
  8. Gericke, W.F. 1929. Aquaculture ameans of crop production. Amer. J. Bor. 16:826.
  9. Grunert. O., M. Perneel, and S. Vandaele. 2008. Peat-based organic growbags as a solution to the mineral wool waste problem. Mires and Peat 3:1-5.
  10. Hwang, Y.H., C.G. An, Y.H. Chang, H.S Yoon, J.U. An, G.M. Shon, C.W. Rho, and B.R. Jeong. 2012. Effect of Zero Drainage Using Drainage Zero Sensor on Root Zone Environment, Growth and Yield in Tomato Rockwool Culture. Protected Hort. Plant Fac. 21(4):398-403. https://doi.org/10.12791/KSBEC.2012.21.4.398
  11. Islam, S. 2008. Evaluating performance of ecologically sound organic substrates under different temperature regimes International Journal of Agriculture and Biology 10:297-300.
  12. Klaring, H.P. 2001. Strategies to control water and nutrient supplies to greenghouse crop. A review. Arronimie 21:311-321.
  13. Lopez, J., L.E. Parent, N. Tremblay and A. Gosselin. 2002. Sulfate accumulation and calcium balance in hydroponic tomato culture. Journal of Plant Nutrition. 25(7): 1585-1597. https://doi.org/10.1081/PLN-120005409
  14. Morard, P., L. Lacoste, and J Silvestre. 2000. Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture. Journal of Plant Nutrition. 23(8):1063-1078. https://doi.org/10.1080/01904160009382082
  15. Rural Development Administration. 2016. Statistical data of soilless culture in Korea.
  16. San Bautista, A., R. Rueda, B. Pascual, J.V. Maroto, and S. Lopez-Galarza. 2005. Influence of different substrates and nutrient solutions on the yields and the incidence of abiotic disorders of Broccoli. Acta Hortic 697:275-280.
  17. Surrage, V.A., C. Lafreniere, M. Dixon, and Y. Zheng. 2010. Benefits of vermicompost as a constituent of growing substrates used in the production of organic greenhouse tomatoes. HortSci 45:1510-1515.
  18. Sonneveld, C. 1981. Items for application of macro-elements in soilless culture. Acta Hort. 126:187-195.
  19. Voogt, W. 1993. Nutrient uptake of year round tomato crops. Acta Horticulturae 339:99-112.
  20. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity and mineral composition of hydroponically cultivated greenhouse tomatoes with or without nutrient solution recycling. J. Amer. Soc. Hort. Sci 121(6):1082-1088.