• Title/Summary/Keyword: 인조흑연

Search Result 21, Processing Time 0.026 seconds

A Study on the Possibility of Bulk Graphite Manufacturing using Coal Tar as a Binder and an Impregnant (콜타르를 결합재 및 함침재로 이용한 벌크 흑연 제조)

  • Lee, Sang-Min;Lee, Sang-Hye;Kang, Dong-Su;Roh, Jae-Seung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • This paper studied the possibility of manufacturing bulk graphite using coal tar, a precursor of coal tar pitch, as a binder and impregnant. Carbonization was conducted after mixing and molding with natural graphite as a filler and coal tar as a binder. Impregnation-recarbonization was performed five times after carbonization. Coal tar used as impregnant. Measuring density, porosity, compressive strength, and anisotropy ratio was conducted. The maximum density of bulk graphite specimen was 1.76 g/㎤ and the minimum porosity was 15.6% which could be controlled by process control. The highest compressive strength was 20.3 MPa. Then the maximum anisotropic ratio of bulk was shown 0.34 through XRD analysis. Therefore, it was confirmed that it was possible to manufacture artificial graphite in a bulk form by using coal tar as a binder and an impregnant.

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Thermal Stability and Deintercalation of K-synthetic Graphite Intercalation Compounds at Elevated Temperatures (칼륨-인조 흑연 층간 화합물의 고온열적 안정성과 Deintercalation)

  • Oh, Won-Chun;Lee, Young-Hoon;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.92-95
    • /
    • 1998
  • K-SGICs(synthetic graphite intercalation compounds) were synthesized in a modified two-bulb pyrex tube. The pressure in the two-bulb tube was maintained at approximately $10^{-3}$ torr for the reaction of potassium and graphite. Deintercalation process of the K-SGlCs obtained by the modified method was heat-treated by keeping in liquid paraffin between $25^{\circ}C$ and $1400^{\circ}C$. The thermal stability and the temperature dependence of the K-SGICs were characterized using differential scanning calorimeter(DSC) analyzer. Enthalpy and entropy for K-SGIC formations were calculated by confirming the deintercalation and thermodynamic exothermic reactions depending on the various temperatures. The structure changes and thermal stability of K-SGICs during the deintercalation reaction of potassium ions and the interlayer spaces of the synthetic graphite were identified by X-ray diffraction(XRD).

  • PDF

Properties Changes of Cokes and Forming Bodies Derived from Them during Artificial Graphite Manufacturing (인조흑연 제조공정중의 코크스와 그 성형체의 물성변화)

  • Gwon, Yeong-Bae;Kim, Hong
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.105-114
    • /
    • 1990
  • The relationship between the properties of two kinds of calcined cokes and graphitized forming bodies were examined. The microstructures of the forming bodies are already determined to some degree at the stage of baking. Calcined cokes as well as baked forming bodies using the same coke as filler were heat treated at various temperatures and their structural and properties changes with heat treated temperature were studied. The transition in properties changes with heat treatment in forming bodies were observed around $2000^{\circ}C$. The characteristics of the finial graphite bodies are strongly dependent on the properties of the raw material cokes.

  • PDF

Analysis of structural and thermodynamic properties for Li-SGICs synthesized by chemical method (화학적 방법에 의하여 합성된 Li-SGICs의 구조적, 열역학적 특성 분석)

  • 오원춘
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.435-441
    • /
    • 1998
  • Li-SGICs as a anode of lithium ion battery were synthesized by high-pressure method as a function of the Li-contents. The characteristics of these prepared compounds were determined from the studies with X-ray diffraction method and differential scanning calorimeter (DSC) analysis. From the results of X-ray diffraction, it was found that the lower stage intercalation compounds were formed with increase of Li-contents. The mixed stages in these compounds were also observed. In the case of the $Li_{30;wt%}$-SGIC, the compounds in the stage 1 structure were formed predominantly, but the structure of only pure stage 1, due to the structural defect of synthetic graphite, was not observed. The enthalpy and entropy changes of the compounds could be obtained from the differential scanning calorimetric analysis results. From the results, it was found that exothermic and endothermic reactions of Li-SGICs are related to thermal stability of lithium between artificial graphite layers.

  • PDF

Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries (이차전지 음극용 탄소 전극을 이용한 리튬이온 커패시터 연구)

  • Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.489-493
    • /
    • 2013
  • The most common carbonaceous anode materials of lithium ion batteries (natural graphite, artificial graphite, hard carbon, and mesocarbon microbeads) were utilized as an electrode in lithium ion capacitors. It could be able to enhance the energy density of capacitors due to the intercalation of lithium ion. In this work, the properties of capacitors using the symmetric electrode were measured by organizing coin cell typed capacitors. Also, we made other capacitors having pre-intercalated lithium ions at one side of the electrode. The results of electrochemical measurements for these capacitors show that the storage capacitance was appeared. In other words, if the migration of lithium ions is supplied continuously in the electrolytes, lithium ions can be diffused into the carbonaceous materials. And it results in the improvement of capacitance compared to only using symmetric carbonaceous electrodes. Also, we conducted the same measurement with graphene oxide having a the large specific area in the same condition. Herein, we recognized that the large specific area is extremely important for supercapacitors.

Crystallinity Changes Heat Treatment of Coal Tar Pitch and Phenol Resin used as a Binder for Bulk Graphite Manufacturing (벌크흑연 제조를 위한 결합재로 이용되는 콜타르 핏치 및 페놀수지의 열처리에 의한 결정성 변화)

  • Lee, Sang-Min;Lee, Hyun-yong;Lee, Sang-Hye;Roh, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • The coal tar pitch and phenol resins are used as binders in artificial graphite manufacture, but there are differences in the initial carbon compound structure. According to the carbonization temperature, it can be expected that there are differences in thermal decomposition behavior, microstructure, and crystallinity change. These properties of the coal tar pitch and phenol resins were compared to each other. As the carbonization temperature of coal tar pitch and phenol resin increases, crystallinity tends to increase. The coal tar pitch went through the carbonization process through the liquid, and it was confirmed that the crystallinity changed rapidly in the temperature range of 500 and 600 ℃, where the microstructure changed quickly. These results confirmed the close correlation between microstructure and crystallinity.

Thermal conductivity of acrylic composite films containing graphite and carbon nanotube (흑연과 탄소나노튜브를 함유한 아크릴 복합체 박막의 열전도도)

  • Kim, Jun-Yeong;Gang, Chan-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.185-185
    • /
    • 2016
  • 아크릴계 수지(resin)에 인조 흑연과 탄소나노튜브(carbon nanotube)를 1:1 비율로 혼합한 충전제(filler)와 용제(solvent) 및 기타 첨가제(additives)를 혼합하여 방열도료를 제조하여 수직방향 열전도도를 상온에서 평가하였다. 충전제의 함량을 1, 2, 5 중량 %로 변화시키며 원료들을 준비하여 교반기로 혼합한 뒤 3단 롤 밀(three roll mill)로 분산공정을 진행하여 3 종류의 도료를 제조하였다. 제조한 도료를 가로 11 mm, 세로 11 mm, 두께 0.4 mm의 Al 5052 알루미늄 기판에 스프레이 코팅 방식으로 도포한 후 $150^{\circ}C$에서 30분 동안 열경화 건조 과정을 거쳐 샘플을 제작하였다. 측정 시료의 형상은 대략적으로 Fig. 1과 같다. 열전도도는 식 $k={\alpha}{\cdot}C_p{\cdot}{\rho}$를 사용해서 계산된다. 여기서 k는 열전도도($W/m{\cdot}K$), ${\alpha}$는 열확산계수($mm^2/s$), $C_p$는 비열($J/kg{\cdot}K$), ${\rho}$는 밀도($g/cm^3$)를 나타낸다. 열확산계수는 독일 NETZSCH 사의 Laser Flash Analysis 장비(모델명 LFA 457)를 사용하여 측정하였는데, 기판 뒤쪽에서 레이저를 조사하고 도료층 전면에서 적외선 온도센서를 통해 시간에 따른 온도 상승곡선을 구한 후, 두 물체의 계면에서의 접촉 열저항(contact thermal resistance)을 감안하여 장비에 내장되어 있는 소프트웨어로 열확산계수가 계산된다. 비열은 같은 회사의 DSC(Differential Scanning Calorimetry) 200 F3 장비를 사용해 측정했으며, 밀도는 부피와 질량을 측정한 값을 이용하여 계산하였다. 도료를 도포하지 않은 bare Al plate에 대해서는 쉽게 열확산계수, 비열, 밀도를 측정하여 열전도도를 구할 수 있다. 도료가 코팅된 샘플에 대해서는 도료층을 일부 떼어내 비열을 측정하고, 밀도를 구한 후, 도료층의 열전도도가 2-layer 법으로 장비 내장 소프트웨어로 계산된다, 이때 Al 기판의 열확산계수, 비열, 밀도는 미리 측정한 bare Al plate의 값을 적용하였다. 실험 결과를 Table 1에 정리하였다. 흑연과 탄소나노튜브를 혼합한 충전제를 함유한 아크릴 복합체 박막에서 측정된 열전도도는 보통 고분자 재료의 열전도도 값의 상한 영역에 육박하는 값이며, 충전제 함량이 증가할수록 열전도도가 증가하는 경향을 보이고 있다.

  • PDF

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles (함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Lee, Young-Seak;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.251-261
    • /
    • 2012
  • The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

A Study on the chemical analysis of synthesized Li-AGICs with changes of intercalant contents (Intercalant 함량 변화에 따라 합성된 Li-AGICs의 화학적 분석에 관한 연구)

  • Oh, Won-Chun;Shim, Sang-Kyun
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.209-215
    • /
    • 1997
  • Li-AGICs as a anode of secondary battery were synthesized by high-pressure method as a function of the Li-contents. The characteristics of these prepared compounds were determined from the studies with X-ray diffraction method, UV/VIS spectrophotometric and differential scanning calorimeter(DSC) analysis. From the results of X-ray diffraction, it was found that the lower stage intercalation compounds were formed with increase of Li-contents. The mixed stages in these compounds were also observed. In the case of the $Li_{30wt%}$-AGIC, the compounds in the stage 1 structure were formed predominantly, but the structure of only pure stage 1 for structural defect of artificial graphite is not observed. According to UV/VIS spectrophotometric analysis, $Li_{30wt%}$-AGIC shows distinguishable energy state spectrum with the position of $R(%)_{min}$ values, but the characteristic spectra of almost all Li-AGICs are not observed. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From the results, it was found that exothermic and endothermic reactions of Li-AGICs are related to thermal stability of lithium between artificial graphite layers.

  • PDF